C. A. Janeway, S. O. Sharrow, and E. Simpson, T cell populations with different functions, Nature, vol.253, pp.544-546, 1975.

S. Sakaguchi, N. Sakaguchi, M. Asano, M. Itoh, and M. Toda, Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25), J Immunol, vol.155, pp.1151-1164, 1995.

B. M. Hall, N. W. Pearce, K. E. Gurley, and S. E. Dorsch, Specific unresponsiveness in rats with prolonged cardiac allograft survival after treatment with cyclosporine. III. Further characterization of the CD4þ suppressor cell and its mechanisms of action, J Exp Med, vol.171, pp.141-157, 1990.

S. Hori, T. Nomura, and S. Sakaguchi, Control of regulatory T cell development by the transcription factor Foxp3, Science, vol.299, pp.1057-1061, 2003.

J. D. Fontenot, M. A. Gavin, and A. Y. Rudensky, Foxp3 programs the development and function of CD4þCD25þ regulatory T cells, Nat Immunol, vol.4, pp.330-336, 2003.

R. Khattri, T. Cox, S. A. Yasayko, and F. Ramsdell, An essential role for Scurfin in CD4þCD25þ T regulatory cells, Nat Immunol, vol.4, pp.337-342, 2003.

C. L. Bennett, J. Christie, and F. Ramsdell, The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3, Nat Genet, vol.27, pp.20-21, 2001.

H. Waldmann, L. Graca, S. Cobbold, A. E. Tone, M. Tone et al., Regulatory T cells and organ transplantation, Semin Immunol, vol.16, pp.119-126, 2004.

H. Waldmann, R. Hilbrands, D. Howie, and S. Cobbold, Harnessing FOXP3þ regulatory T cells for transplantation tolerance, J Clin Invest, vol.124, pp.1439-1445, 2014.

K. J. Wood and S. Sakaguchi, Regulatory T cells in transplantation tolerance, Nat Rev Immunol, vol.3, pp.199-210, 2003.

I. R. Ferrer, J. Hester, A. Bushell, and K. J. Wood, Induction of transplantation tolerance through regulatory cells: From mice to men, Immunol Rev, vol.258, pp.102-116, 2014.

E. J. Fuchs, Transplantation tolerance: From theory to clinic, Immunol Rev, vol.258, pp.64-79, 2014.

M. Miyara, Y. Yoshioka, and A. Kitoh, Functional delineation and differentiation dynamics of human CD4þ T cells expressing the FoxP3 transcription factor, Immunity, vol.30, pp.899-911, 2009.

C. Schmidl, L. Hansmann, and T. Lassmann, The enhancer and promoter landscape of human regulatory and conventional T cell subpopulations, Blood, vol.123, pp.68-78, 2014.

F. Braza, E. Dugast, and I. Panov, Central role of CD45RA-Foxp3hi memory regulatory T cells in clinical kidney transplantation tolerance, J Am Soc Nephrol, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-02147767

T. Duhen, R. Duhen, A. Lanzavecchia, F. Sallusto, and D. J. Campbell, Functionally distinct subsets of human FOXP3þ Treg cells that phenotypically mirror effector Th cells, Blood, vol.119, pp.4430-4440, 2012.

E. M. Shevach, Mechanisms of foxp3þ T regulatory cell-mediated suppression, Immunity, vol.30, pp.636-645, 2009.

D. J. Campbell and M. A. Koch, Phenotypical and functional specialization of FOXP3þ regulatory T cells, Nat Rev Immunol, vol.11, pp.119-130, 2011.

D. V. Sawant and D. A. Vignali, Once a Treg, always a Treg?, Immunol Rev, vol.259, pp.173-191, 2014.

J. J. Coenen, H. J. Koenen, E. Van-rijssen, L. B. Hilbrands, and I. Joosten, Rapamycin and not cyclosporin A, preserves the highly suppressive CD27þ subset of human CD4þCD25þ regulatory T cells, Blood, vol.107, pp.1018-1023, 2006.

M. Kawai, H. Kitade, C. Mathieu, M. Waer, and J. Pirenne, Inhibitory and stimulatory effects of cyclosporine A on the development of regulatory T cells in vivo, Transplantation, vol.79, pp.1073-1077, 2005.

S. Floess, J. Freyer, and C. Siewert, Epigenetic control of the foxp3 locus in regulatory T cells, PLoS Biol, vol.5, p.38, 2007.

H. Morikawa, N. Ohkura, and A. Vandenbon, Differential roles of epigenetic changes and Foxp3 expression in regulatory T cellspecific transcriptional regulation, Proc Natl Acad Sci, vol.111, pp.5289-5294, 2014.

N. Ohkura, M. Hamaguchi, and H. Morikawa, T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development, Immunity, vol.37, pp.785-799, 2012.

U. Baron, S. Floess, and G. Wieczorek, DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3(þ) conventional T cells, Eur J Immunol, vol.37, pp.2378-2389, 2007.

D. Rudra, P. Chaudhry, and A. , Transcription factor Foxp3 and its protein partners form a complex regulatory network, Nat Immunol, vol.13, pp.1010-1019, 2012.

W. Fu, A. Ergun, and T. Lu, A multiply redundant genetic switch 'locks in' the transcriptional signature of regulatory T cells, Nat Immunol, vol.13, pp.972-980, 2012.

W. Ouyang, W. Liao, and C. T. Luo, Novel Foxo1-dependent transcriptional programs control T(reg) cell function, Nature, vol.491, pp.554-559, 2012.

O. Bestard, J. M. Cruzado, and I. Rama, Presence of FoxP3þ regulatory T Cells predicts outcome of subclinical rejection of renal allografts, J Am Soc Nephrol, vol.19, pp.2020-2026, 2008.

O. Bestard, L. Cunetti, and J. M. Cruzado, Intragraft regulatory T cells in protocol biopsies retain foxp3 demethylation and are protective biomarkers for kidney graft outcome, Am J Transplant, vol.11, pp.2162-2172, 2011.

S. Sakaguchi, M. Miyara, C. M. Costantino, and D. A. Hafler, FOXP3þ regulatory T cells in the human immune system, Nat Rev Immunol, vol.10, pp.490-500, 2010.

W. Liu, A. L. Putnam, and Z. Xu-yu, CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4þ T reg cells, J Exp Med, vol.203, pp.1701-1711, 2006.

H. T. Maecker, J. P. Mccoy, and R. Nussenblatt, Standardizing immunophenotyping for the Human Immunology Project, Nat Rev Immunol, vol.12, pp.191-200, 2012.

D. Valmori, A. Merlo, N. E. Souleimanian, C. S. Hesdorffer, and M. Ayyoub, A peripheral circulating compartment of natural naive CD4 Tregs, J Clin Invest, vol.115, pp.1953-1962, 2005.

M. Ayyoub, C. Raffin, and D. Valmori, Comment on ''heliosþ and helioscells coexist within the natural FOXP3þ T regulatory cell subset in humans, J Immunol, vol.190, pp.4439-4440, 2013.

C. Raffin, P. Pignon, C. Celse, E. Debien, D. Valmori et al., Human memory Helios-FOXP3þ regulatory T cells (Tregs) encompass induced Tregs that express Aiolos and respond to IL1beta by downregulating their suppressor functions, J Immunol, vol.191, pp.4619-4627, 2013.

R. Sanchez-rodriguez, M. L. Pauli, and I. M. Neuhaus, Memory regulatory T cells reside in human skin, J Clin Invest, vol.124, pp.1027-1036, 2014.

K. M. Dwyer, D. Hanidziar, and P. Putheti, Expression of CD39 by human peripheral blood CD4þ CD25þ T cells denotes a regulatory memory phenotype, Am J Transplant, vol.10, pp.2410-2420, 2010.

C. Baecher-allan, E. Wolf, and D. A. Hafler, MHC class II expression identifies functionally distinct human regulatory T cells, J Immunol, vol.176, pp.4622-4631, 2006.

M. Schaier, N. Seissler, and E. Schmitt, DR(highþ)CD45RA(À)-Tregs potentially affect the suppressive activity of the total Treg pool in renal transplant patients, PLoS ONE, vol.7, p.34208, 2012.

A. M. Pesenacker, R. Broady, and M. K. Levings, Control of tissuelocalized immune responses by human regulatory T cells, Eur J Immunol, vol.45, pp.333-343, 2015.

M. A. Linterman, W. Pierson, and S. K. Lee, Foxp3þ follicular regulatory T cells control the germinal center response, Nat Med, vol.17, pp.975-982, 2011.
DOI : 10.1038/nm.2425

URL : http://europepmc.org/articles/pmc3182542?pdf=render

P. Grimbert, H. Mansour, and D. Desvaux, The regulatory/ cytotoxic graft-infiltrating T cells differentiate renal allograft borderline change from acute rejection, Transplantation, vol.83, pp.341-346, 2007.
DOI : 10.1097/01.tp.0000248884.71946.19

H. Mansour, S. Homs, and D. Desvaux, Intragraft levels of Foxp3 mRNA predict progression in renal transplants with borderline change, J Am Soc Nephrol, vol.19, pp.2277-2281, 2008.

O. Bestard, J. M. Cruzado, and M. Mestre, Achieving donor-specific hyporesponsiveness is associated with FOXP3þ regulatory T cell recruitment in human renal allograft infiltrates, J Immunol, vol.179, pp.4901-4909, 2007.
DOI : 10.4049/jimmunol.179.7.4901

URL : http://www.jimmunol.org/content/179/7/4901.full.pdf

J. Ashton-chess, E. Dugast, and R. B. Colvin, Regulatory, effector, and cytotoxic T cell profiles in long-term kidney transplant patients, J Am Soc Nephrol, vol.20, pp.1113-1122, 2009.
DOI : 10.1681/asn.2008050450

URL : https://jasn.asnjournals.org/content/20/5/1113.full.pdf

T. Muthukumar, D. Dadhania, and R. Ding, Messenger RNA for FOXP3 in the urine of renal-allograft recipients, N Engl J Med, vol.353, pp.2342-2351, 2005.

F. Veronese, S. Rotman, and R. N. Smith, Pathological and clinical correlates of FOXP3þ cells in renal allografts during acute rejection, Am J Transplant, vol.7, pp.914-922, 2007.

S. F. Ziegler, FOXP3: Not just for regulatory T cells anymore, Eur J Immunol, vol.37, pp.21-23, 2007.

G. Wieczorek, A. Asemissen, and F. Model, Quantitative DNA methylation analysis of FOXP3 as a new method for counting regulatory T cells in peripheral blood and solid tissue, Cancer Res, vol.69, pp.599-608, 2009.

D. Serres, S. A. Sayegh, M. H. Najafian, and N. , Immunosuppressive drugs and Tregs: A critical evaluation!, Clin. J Am Soc Nephrol, vol.4, pp.1661-1669, 2009.

D. Fanigliulo, P. E. Lazzerini, P. L. Capecchi, C. Ulivieri, C. T. Baldari et al., Clinically-relevant cyclosporin and rapamycin concentrations enhance regulatory T cell function to a similar extent but with different mechanisms: An in-vitro study in healthy humans, Int Immunopharmacol, vol.24, pp.276-284, 2014.

T. Akimova, B. M. Kamath, and J. W. Goebel, Differing effects of rapamycin or calcineurin inhibitor on T-regulatory cells in pediatric liver and kidney transplant recipients, Am J Transplant, vol.12, pp.3449-3461, 2012.

M. Battaglia, A. Stabilini, and M. G. Roncarolo, Rapamycin selectively expands CD4þCD25þFoxP3þ regulatory T cells, Blood, vol.105, pp.4743-4748, 2005.

J. Hester, A. Schiopu, S. N. Nadig, and K. J. Wood, Low-dose rapamycin treatment increases the ability of human regulatory T cells to inhibit transplant arteriosclerosis in vivo, Am J Transplant, vol.12, pp.2008-2016, 2012.

M. Rossetti, R. Spreafico, and S. Saidin, Ex vivo-expanded but not in vitro-induced human regulatory T cells are candidates for cell therapy in autoimmune diseases thanks to stable demethylation of the FOXP3 regulatory T cell-specific demethylated region, J Immunol, vol.194, pp.113-124, 2015.

G. Orlando, P. Hematti, and R. J. Stratta, Clinical operational tolerance after renal transplantation: Current status and future challenges, Ann Surg, vol.252, pp.915-928, 2010.
DOI : 10.1097/sla.0b013e3181f3efb0

URL : http://europepmc.org/articles/pmc4547843?pdf=render

S. Brouard, A. Pallier, and K. Renaudin, The natural history of clinical operational tolerance after kidney transplantation through twenty-seven cases, Am J Transplant, vol.12, pp.3296-3307, 2012.

K. A. Newell, A. Asare, and A. D. Kirk, Identification of a B cell signature associated with renal transplant tolerance in humans, J Clin Invest, vol.120, pp.1836-1847, 2010.

P. Sagoo, E. Perucha, and B. Sawitzki, Development of a crossplatform biomarker signature to detect renal transplant tolerance in humans, J Clin Invest, vol.120, pp.1848-1861, 2010.

F. Braza, J. P. Soulillou, and S. Brouard, Gene expression signature in transplantation tolerance, Clin Chim Acta, vol.413, pp.1414-1418, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-02167912

S. Brouard, E. Mansfield, and C. Braud, Identification of a peripheral blood transcriptional biomarker panel associated with operational renal allograft tolerance, Proc Natl Acad Sci, vol.104, pp.15448-15453, 2007.

A. Pallier, S. Hillion, and R. Danger, Patients with drug-free longterm graft function display increased numbers of peripheral B cells with a memory and inhibitory phenotype, Kidney Int, vol.78, pp.503-513, 2010.

D. Baron, G. Ramstein, and M. Chesneau, A common gene signature across multiple studies relate biomarkers and functional regulation in tolerance to renal allograft, Kidney Int, vol.87, pp.984-995, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01119557

P. M. Moraes-vieira, M. C. Takenaka, and H. M. Silva, GATA3 and a dominant regulatory gene expression profile discriminate operational tolerance in human transplantation, Clin Immunol, vol.142, pp.117-126, 2012.

M. Chesneau, A. Pallier, and F. Braza, Unique B cell differentiation profile in tolerant kidney transplant patients, Am J Transplant, vol.14, pp.144-155, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00974748

H. M. Silva, M. C. Takenaka, and P. M. Moraes-vieira, Preserving the B cell compartment favors operational tolerance in human renal transplantation, Mol Med, vol.18, pp.733-743, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01959589

C. Braudeau, M. Racape, and M. Giral, Variation in numbers of CD4þCD25highFOXP3þ T cells with normal immuno-regulatory properties in long-term graft outcome, Transpl Int, vol.20, pp.845-855, 2007.

S. Louis, C. Braudeau, and M. Giral, Contrasting CD25hiCD4þT cells/FOXP3 patterns in chronic rejection and operational drugfree tolerance, Transplantation, vol.81, pp.398-407, 2006.

L. E. Becker, F. De-oliveira-biazotto, and H. Conrad, Cellular infiltrates and NFkappaB subunit c-Rel signaling in kidney allografts of patients with clinical operational tolerance, Transplantation, vol.94, pp.729-737, 2012.

G. Roussey-kesler, M. Giral, and A. Moreau, Clinical operational tolerance after kidney transplantation, Am J Transplant, vol.6, pp.736-746, 2006.

R. Danger, A. Pallier, and M. Giral, Upregulation of miR-142-3p in peripheral blood mononuclear cells of operationally tolerant patients with a renal transplant, J Am Soc Nephrol, vol.23, pp.597-606, 2012.

J. D. Scandling, S. Busque, and S. Dejbakhsh-jones, Tolerance and withdrawal of immunosuppressive drugs in patients given kidney and hematopoietic cell transplants, Am J Transplant, vol.12, pp.1133-1145, 2012.

T. Kawai, D. H. Sachs, M. Sykes, and A. B. Cosimi, Immune Tolerance N. HLA-mismatched renal transplantation without maintenance immunosuppression, N Engl J Med, vol.368, pp.1850-1852, 2013.

G. Andreola, M. Chittenden, and J. Shaffer, Mechanisms of donorspecific tolerance in recipients of haploidentical combined bone marrow/kidney transplantation, Am J Transplant, vol.11, pp.1236-1247, 2011.

J. Leventhal, M. Abecassis, and J. Miller, Chimerism and tolerance without GVHD or engraftment syndrome in HLA-mismatched combined kidney and hematopoietic stem cell transplantation, Sci Transl Med, vol.4, pp.124-152, 2012.

J. Leventhal, M. Abecassis, and J. Miller, Tolerance induction in HLA disparate living donor kidney transplantation by donor stem cell infusion: Durable chimerism predicts outcome, Transplantation, vol.95, pp.169-176, 2013.

Y. Huang, L. D. Bozulic, T. Miller, H. Xu, L. R. Hussain et al., CD8aþ plasmacytoid precursor DCs induce antigen-specific regulatory T cells that enhance HSC engraftment in vivo, Blood, vol.117, pp.2494-2505, 2011.

B. Liang, C. Workman, and J. Lee, Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II, J Immunol, vol.180, pp.5916-5926, 2008.

T. Haudebourg, A. S. Dugast, F. Coulon, C. Usal, F. Triebel et al., Depletion of LAG-3 positive cells in cardiac allograft reveals their role in rejection and tolerance, Transplantation, vol.84, pp.1500-1506, 2007.

S. M. Krummey and M. L. Ford, Braking bad: Novel mechanisms of CTLA-4 inhibition of T cell responses, Am J Transplant, vol.14, pp.2685-2690, 2014.

H. S. Kuehn, W. Ouyang, and B. Lo, Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4, Science, vol.345, pp.1623-1627, 2014.

D. Schubert, C. Bode, and R. Kenefeck, Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations, Nat Med, vol.20, pp.1410-1416, 2014.

M. Bettini and D. A. Vignali, Regulatory T cells and inhibitory cytokines in autoimmunity, Curr Opin Immunol, vol.21, pp.612-618, 2009.

A. M. Vanbuskirk, W. J. Burlingham, and E. Jankowska-gan, Human allograft acceptance is associated with immune regulation, J Clin Invest, vol.106, pp.145-155, 2000.

L. D. Haynes, E. Jankowska-gan, and A. Sheka, Donor-specific indirect pathway analysis reveals a B cell-independent signature which reflects outcomes in kidney transplant recipients, Am J Transplant, vol.12, pp.640-648, 2012.

G. Borsellino, M. Kleinewietfeld, D. Mitri, and D. , Expression of ectonucleotidase CD39 by Foxp3þ Treg cells: Hydrolysis of extracellular ATP and immune suppression, Blood, vol.110, pp.1225-1232, 2007.

M. Mandapathil, B. Hilldorfer, and M. J. Szczepanski, Generation and accumulation of immunosuppressive adenosine by human CD4þCD25highFOXP3þ regulatory T cells, J Biol Chem, vol.285, pp.7176-7186, 2010.

J. M. Fletcher, R. Lonergan, and L. Costelloe, CD39þFoxp3þ regulatory T Cells suppress pathogenic Th17 cells and are impaired in multiple sclerosis, J Immunol, vol.183, pp.7602-7610, 2009.

G. R. Kinsey, L. Huang, and K. Jaworska, Autocrine adenosine signaling promotes regulatory T cell-mediated renal protection, J Am Soc Nephrol, vol.23, pp.1528-1537, 2012.

S. Deaglio, K. M. Dwyer, and W. Gao, Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression, J Exp Med, vol.204, pp.1257-1265, 2007.

S. L. Bailey-bucktrout, M. Martinez-llordella, and X. Zhou, Selfantigen-driven activation induces instability of regulatory T cells during an inflammatory autoimmune response, Immunity, vol.39, pp.949-962, 2013.

N. Komatsu, K. Okamoto, and S. Sawa, Pathogenic conversion of Foxp3þ T cells into TH17 cells in autoimmune arthritis, Nat Med, vol.20, pp.62-68, 2014.

X. Zhou, S. L. Bailey-bucktrout, and L. T. Jeker, Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo, Nat Immunol, vol.10, pp.1000-1007, 2009.

N. Degauque, C. Mariat, and J. Kenny, Immunostimulatory Tim-1-specific antibody deprograms Tregs and prevents transplant tolerance in mice, J Clin Invest, vol.118, pp.735-741, 2008.

M. D. Vu, X. Xiao, and W. Gao, OX40 costimulation turns off Foxp3þ Tregs, Blood, vol.110, pp.2501-2510, 2007.

M. D. Sharma, L. Huang, and J. H. Choi, An inherently bifunctional subset of Foxp3þ T helper cells is controlled by the transcription factor eos, Immunity, vol.38, pp.998-1012, 2013.

S. Sakaguchi, D. A. Vignali, A. Y. Rudensky, R. E. Niec, and H. Waldmann, The plasticity and stability of regulatory T cells, Nat Rev Immunol, vol.13, pp.461-467, 2013.

T. Miyao, S. Floess, and R. Setoguchi, Plasticity of Foxp3(þ) T cells reflects promiscuous Foxp3 expression in conventional T cells but not reprogramming of regulatory T cells, Immunity, vol.36, pp.262-275, 2012.

P. Hoffmann, T. J. Boeld, and R. Eder, Loss of FOXP3 expression in natural human CD4þCD25þ regulatory T cells upon repetitive in vitro stimulation, Eur J Immunol, vol.39, pp.1088-1097, 2009.

P. Hoffmann, R. Eder, and T. J. Boeld, Only the CD45RAþ subpopulation of CD4þCD25high T cells gives rise to homogeneous regulatory T cell lines upon in vitro expansion, Blood, vol.108, pp.4260-4267, 2006.

D. Valmori, C. Raffin, I. Raimbaud, and M. Ayyoub, Human RORgammatþ TH17 cells preferentially differentiate from naive FOXP3þTreg in the presence of lineage-specific polarizing factors, Proc Natl Acad Sci, vol.107, pp.19402-19407, 2010.

P. Y. Mantel, H. Kuipers, and O. Boyman, GATA3-driven Th2 responses inhibit TGF-beta1-induced FOXP3 expression and the formation of regulatory T cells, PLoS Biol, vol.5, p.329, 2007.

K. G. Macdonald, N. A. Dawson, Q. Huang, J. V. Dunne, M. K. Levings et al., Regulatory T cells produce profibrotic cytokines in the skin of patients with systemic sclerosis, J Allergy Clin Immunol, vol.135, pp.946-955, 2015.

H. Nie, Y. Zheng, and R. Li, Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-alpha in rheumatoid arthritis, Nat Med, vol.19, pp.322-328, 2013.

O. Thaunat, S. Graff-dubois, and N. Fabien, A stepwise breakdown of B cell tolerance occurs within renal allografts during chronic rejection, Kidney Int, vol.81, pp.207-219, 2012.

G. Beriou, C. M. Costantino, and C. W. Ashley, IL-17-producing human peripheral regulatory T cells retain suppressive function, Blood, vol.113, pp.4240-4249, 2009.

M. Dominguez-villar, C. M. Baecher-allan, and D. A. Hafler, Identification of T helper type 1-like, Foxp3þ regulatory T cells in human autoimmune disease, Nat Med, vol.17, pp.673-675, 2011.

S. A. Mcclymont, A. L. Putnam, and M. R. Lee, Plasticity of human regulatory T cells in healthy subjects and patients with type 1 diabetes, J Immunol, vol.186, pp.3918-3926, 2011.

N. Redjimi, C. Raffin, and I. Raimbaud, CXCR3þ T regulatory cells selectively accumulate in human ovarian carcinomas to limit type I immunity, Cancer Res, vol.72, pp.4351-4360, 2012.

S. C. Juvet, A. G. Whatcott, A. R. Bushell, and K. J. Wood, Harnessing regulatory T cells for clinical use in transplantation: The end of the beginning, Am J Transplant, vol.14, pp.750-763, 2014.

R. M. Samstein, A. Arvey, and S. Z. Josefowicz, Foxp3 exploits a preexistent enhancer landscape for regulatory T cell lineage specification, Cell, vol.151, pp.153-166, 2012.

Y. Feng, A. Arvey, T. Chinen, J. Van-der-veeken, G. Gasteiger et al., Control of the inheritance of regulatory T cell identity by a cis element in the Foxp3 locus, Cell, vol.158, pp.749-763, 2014.

C. Schmidl, M. Klug, and T. J. Boeld, Lineage-specific DNA methylation in T cells correlates with histone methylation and enhancer activity, Genome Res, vol.19, pp.1165-1174, 2009.

K. L. Hippen, J. L. Riley, C. H. June, and B. R. Blazar, Clinical perspectives for regulatory T cells in transplantation tolerance, Semin Immunol, vol.23, pp.462-468, 2011.

L. Wang, Y. Liu, and U. H. Beier, Foxp3þ T-regulatory cells require DNA methyltransferase 1 expression to prevent development of lethal autoimmunity, Blood, vol.121, pp.3631-3639, 2013.

A. Huynh, R. Zhang, and L. A. Turka, Signals and pathways controlling regulatory T cells, Immunol Rev, vol.258, pp.117-131, 2014.

K. N. Pollizzi and J. D. Powell, Integrating canonical and metabolic signalling programmes in the regulation of T cell responses, Nat Rev Immunol, vol.14, pp.435-446, 2014.

E. V. Dang, J. Barbi, and H. Y. Yang, Control of T(H) 17/T(reg) balance by hypoxia-inducible factor 1, Cell, vol.146, pp.772-784, 2011.

L. Z. Shi, R. Wang, and G. Huang, HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells, J Exp Med, vol.208, pp.1367-1376, 2011.

E. T. Clambey, E. N. Mcnamee, and J. A. Westrich, Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T cell abundance and function during inflammatory hypoxia of the mucosa, Proc Natl Acad Sci, vol.109, pp.2784-2793, 2012.

G. M. Delgoffe, T. P. Kole, and Y. Zheng, The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment, Immunity, vol.30, pp.832-844, 2009.

G. Liu, K. Yang, S. Burns, S. Shrestha, and H. Chi, The S1P(1)-mTOR axis directs the reciprocal differentiation of T(H) 1 and T(reg) cells, Nat Immunol, vol.11, pp.1047-1056, 2010.

D. Burzyn, W. Kuswanto, and D. Kolodin, A special population of regulatory T cells potentiates muscle repair, Cell, vol.155, pp.1282-1295, 2013.

D. Cipolletta, D. Kolodin, C. Benoist, and D. Mathis, Tissular T(regs): A unique population of adipose-tissue-resident Foxp3þCD4þ T cells that impacts organismal metabolism, Semin Immunol, vol.23, pp.431-437, 2011.

M. A. Exley, L. Hand, O. Shea, D. Lynch, and L. , Interplay between the immune system and adipose tissue in obesity, J Endocrinol, vol.223, pp.41-48, 2014.

M. L. Ford, Literature Watch Implications for transplantation, Am J Transplant, vol.15, p.853, 2015.

D. Kolodin, N. Van-panhuys, and C. Li, Antigen-and cytokine-driven accumulation of regulatory T cells in visceral adipose tissue of lean mice, Cell Metab, vol.21, pp.543-557, 2015.

A. Vasanthakumar, K. Moro, and A. Xin, The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue-resident regulatory T cells, Nat Immunol, vol.16, pp.276-285, 2015.

J. M. Han, D. Wu, H. C. Denroche, Y. Yao, C. B. Verchere et al., IL-33 reverses an obesity-induced deficit in visceral adipose tissue ST2þ T regulatory cells and ameliorates adipose tissue inflammation and insulin resistance, J Immunol, vol.194, pp.4777-4783, 2015.

J. Van-loosdregt, Y. Vercoulen, and T. Guichelaar, Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization, Blood, vol.115, pp.965-974, 2010.

R. Tao, E. F. De-zoeten, and E. Ozkaynak, Deacetylase inhibition promotes the generation and function of regulatory T cells, Nat Med, vol.13, pp.1299-1307, 2007.

S. W. Choi, T. Braun, and L. Chang, Vorinostat plus tacrolimus and mycophenolate to prevent graft-versus-host disease after related-donor reduced-intensity conditioning allogeneic haemopoietic stem-cell transplantation: A phase 1/2 trial, Lancet Oncol, vol.15, pp.87-95, 2014.

S. W. Choi, E. Gatza, and G. Hou, Histone deacetylase inhibition regulates inflammation and enhances Tregs after allogeneic hematopoietic cell transplantation in humans, Blood, vol.125, pp.815-819, 2015.

E. F. De-zoeten, L. Wang, and K. Butler, Histone deacetylase 6 and heat shock protein 90 control the functions of Foxp3(þ) T-regulatory cells, Mol Cell Biol, vol.31, pp.2066-2078, 2011.

L. Wang, Y. Liu, and R. Han, FOXP3þ regulatory T cell development and function require histone/protein deacetylase 3, J Clin Invest, vol.125, pp.1111-1123, 2015.