A. Compston and A. Coles, Multiple sclerosis, Lancet, vol.372, pp.1502-1519, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00996686

C. Pierrot-deseilligny and J. Souberbielle, Is hypovitaminosis D one of the environmental risk factors for multiple sclerosis?, Brain, vol.133, pp.1869-88, 2010.

M. Sospedra and R. Martin, Immunology of multiple sclerosis, Annu Rev Immunol, vol.23, pp.683-747, 2005.

J. H. Noseworthy, C. Lucchinetti, M. Rodriguez, and B. G. Weinshenker, Multiple sclerosis, N Engl J Med, vol.343, pp.938-52, 2000.

B. W. Van-oosten, M. Lai, S. Hodgkinson, F. Barkhof, D. H. Miller et al., Treatment of multiple sclerosis with the monoclonal anti-CD4 antibody cM-T412: results of a randomized, double-blind, placebo-controlled, MR-monitored phase II trial, Neurology, vol.49, pp.351-358, 1997.

S. Sinha, F. R. Itani, and N. J. Karandikar, Immune regulation of multiple sclerosis by CD8+ T cells, Immunol Res, vol.59, pp.254-65, 2014.

A. Denic, B. Wootla, and M. Rodriguez, CD8(+) T cells in multiple sclerosis, Expert Opin Ther Targets, vol.17, pp.1053-66, 2013.

M. A. Brown, J. P. Rubio, M. Bahlo, J. Stankovich, P. Danoy et al., Salivaderived DNA performs well in large-scale, high-density single-nucleotide polymorphism microarray studies, Cancer Epidemiol Biomarkers Prev, vol.19, pp.794-802, 2010.

S. E. Baranzini, J. Wang, R. A. Gibson, N. Galwey, Y. Naegelin et al.,

, Genome-wide association analysis of susceptibility and clinical phenotype in multiple sclerosis, Hum Mol Genet, vol.18, pp.767-78, 2009.

S. Sawcer, G. Hellenthal, M. Pirinen, C. Spencer, N. A. Patsopoulos et al., Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis, Nature, vol.476, pp.214-223, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00996686

D. A. Hafler, A. Compston, S. Sawcer, E. S. Lander, M. J. Daly et al., Risk alleles for multiple sclerosis identified by a genomewide study, N Engl J Med, vol.357, pp.851-62, 2007.

F. Esposito, J. Reischl, S. Lehr, D. Bauer, J. Heubach et al., Genomewide meta-analysis identifies novel multiple sclerosis susceptibility loci, Ann Neurol, vol.70, pp.897-912, 2011.

S. Sawcer, R. Franklin, and M. Ban, Multiple sclerosis genetics, Lancet Neurol, vol.13, pp.700-709, 2014.

C. Jersild, A. Svejgaard, and T. Fog, HL-A antigens and multiple sclerosis, Lancet, vol.1, pp.1240-1241, 1972.

S. Naito, N. Namerow, M. R. Mickey, and P. I. Terasaki, Multiple sclerosis: association with HL-A3, Tissue Antigens, vol.2, 1972.

A. Fogdell-hahn, A. Ligers, M. Grønning, J. Hillert, and O. Olerup, Multiple sclerosis: a modifying influence of HLA class I genes in an HLA class II associated autoimmune disease, Tissue Antigens, vol.55, pp.140-148, 2000.

H. F. Harbo, B. A. Lie, S. Sawcer, E. G. Celius, K. Dai et al., Genes in the HLA class I region may contribute to the HLA class II-associated genetic susceptibility to multiple sclerosis, Tissue Antigens, vol.63, pp.237-284, 2004.

M. A. Friese, K. B. Jakobsen, L. Friis, R. Etzensperger, M. J. Craner et al., Opposing effects of HLA class I molecules in tuning autoreactive CD8+ T cells in multiple sclerosis, Nat Med, vol.14, pp.1227-1262, 2008.

J. Booss, M. M. Esiri, W. W. Tourtellotte, and D. Y. Mason, Immunohistological analysis of T lymphocyte subsets in the central nervous system in chronic progressive multiple sclerosis, J Neurol Sci, vol.62, pp.219-251, 1983.

S. L. Hauser, A. K. Bhan, F. Gilles, M. Kemp, C. Kerr et al., Immunohistochemical analysis of the cellular infiltrate in multiple sclerosis lesions, Ann Neurol, vol.19, pp.578-87, 1986.

M. Salou, A. Garcia, L. Michel, A. Gainche-salmon, D. Loussouarn et al., Expanded CD8 T-cell sharing between periphery and CNS in multiple sclerosis, Ann Clin Transl Neurol, vol.2, pp.609-631, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01200787

H. Babbe, A. Roers, A. Waisman, H. Lassmann, N. Goebels et al., Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction, J Exp Med, vol.192, pp.393-404, 2000.

A. Junker, J. Ivanidze, J. Malotka, I. Eiglmeier, H. Lassmann et al., Multiple sclerosis: T-cell receptor expression in distinct brain regions, Brain, vol.130, pp.2789-99, 2007.

C. Skulina, S. Schmidt, K. Dornmair, H. Babbe, A. Roers et al., Multiple sclerosis: brain-infiltrating CD8+ T cells persist as clonal expansions in the cerebrospinal fluid and blood, Proc Natl Acad Sci U S A, vol.101, pp.2428-2461, 2004.

I. Ifergan, H. Kebir, J. I. Alvarez, G. Marceau, M. Bernard et al., Central nervous system recruitment of effector memory CD8+ T lymphocytes during neuroinflammation is dependent on ?4 integrin, Brain, vol.134, pp.3557-74, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-00723279

J. S. Tzartos, M. A. Friese, M. J. Craner, J. Palace, J. Newcombe et al., Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis, Am J Pathol, vol.172, pp.146-55, 2008.

C. F. Lucchinetti, B. Popescu, R. F. Bunyan, N. M. Moll, S. F. Roemer et al., Inflammatory cortical demyelination in early multiple sclerosis, N Engl J Med, vol.365, pp.2188-97, 2011.

R. Höftberger, F. Aboul-enein, W. Brueck, C. Lucchinetti, M. Rodriguez et al., Expression of major histocompatibility complex class I molecules on the different cell types in multiple sclerosis lesions, Brain Pathol, vol.14, pp.43-50, 2004.

I. Medana, M. A. Martinic, H. Wekerle, and H. Neumann, Transection of major histocompatibility complex class I-induced neurites by cytotoxic T lymphocytes, Am J Pathol, vol.159, issue.10, pp.61755-61760, 2001.

B. D. Trapp, J. Peterson, R. M. Ransohoff, R. Rudick, S. Mörk et al., Axonal transection in the lesions of multiple sclerosis, N Engl J Med, vol.338, pp.278-85, 1998.

A. Bitsch, J. Schuchardt, S. Bunkowski, T. Kuhlmann, and W. Brück, Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation, Brain, pp.1174-83, 2000.

V. Annibali, G. Ristori, D. F. Angelini, B. Serafini, R. Mechelli et al., CD161(high)CD8+T cells bear pathogenetic potential in multiple sclerosis, Brain, vol.134, pp.542-54, 2011.

S. Jilek, M. Schluep, A. O. Rossetti, L. Guignard, L. Goff et al., CSF enrichment of highly differentiated CD8+ T cells in early multiple sclerosis, Clin Immunol, vol.123, pp.105-118, 2007.

C. Malmeström, J. Lycke, S. Haghighi, O. Andersen, L. Carlsson et al., Relapses in multiple sclerosis are associated with increased CD8+ T-cell mediated cytotoxicity in CSF, J Neuroimmunol, vol.196, pp.159-65, 2008.

C. Larochelle, M. Lécuyer, J. I. Alvarez, M. Charabati, O. Saint-laurent et al., Melanoma cell adhesion molecule-positive CD8 T lymphocytes mediate central nervous system inflammation, Ann Neurol, vol.78, pp.39-53, 2015.

C. Larochelle, R. Cayrol, H. Kebir, J. I. Alvarez, M. Lécuyer et al., Melanoma cell adhesion molecule identifies encephalitogenic T lymphocytes and promotes their recruitment to the central nervous system, Brain, vol.135, pp.2906-2930, 2012.

K. Flanagan, K. Fitzgerald, J. Baker, K. Regnstrom, S. Gardai et al., Laminin-411 is a vascular ligand for MCAM and facilitates TH17 cell entry into the CNS, PLoS One, vol.7, p.40443, 2012.

H. Duan, S. Xing, Y. Luo, L. Feng, I. Gramaglia et al., Targeting endothelial CD146 attenuates neuroinflammation by limiting lymphocyte extravasation to the, CNS. Sci Rep, vol.3, p.1687, 2013.

R. L. Juliano and V. Ling, A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants, Biochim Biophys Acta, vol.455, pp.152-62, 1976.

G. Kooij, R. Backer, J. J. Koning, A. Reijerkerk, J. Van-horssen et al., P-glycoprotein acts as an immunomodulator during neuroinflammation, PLoS One, vol.4, p.8212, 2009.

G. Kooij, J. Kroon, D. Paul, A. Reijerkerk, D. Geerts et al., P-glycoprotein regulates trafficking of CD8(+) T cells to the brain parenchyma, Acta Neuropathol, vol.127, pp.699-711, 2014.

E. Ngono, A. Pettré, S. Salou, M. Bahbouhi, B. Soulillou et al., Frequency of circulating autoreactive T cells committed to myelin determinants in relapsing-remitting multiple sclerosis patients, Clin Immunol, vol.144, pp.117-143, 2012.

A. K. Sewell, Why must T cells be cross-reactive?, Nat Rev Immunol, vol.12, pp.669-77, 2012.

X. Zhang, Y. Tang, D. Sujkowska, J. Wang, V. Ramgolam et al., Degenerate TCR recognition and dual DR2 restriction of autoreactive T cells: implications for the initiation of the autoimmune response in multiple sclerosis, Eur J Immunol, vol.38, pp.1297-309, 2008.

Q. Ji, A. Perchellet, and J. M. Goverman, Viral infection triggers central nervous system autoimmunity via activation of CD8+ T cells expressing dual TCRs, Nat Immunol, vol.11, pp.628-662, 2010.

S. Kim, L. Bhonsle, P. Besgen, J. Nickel, A. Backes et al., Analysis of the paired TCR ?-and ?-chains of single human T cells, PLoS One, vol.7, p.37338, 2012.

N. Goebels, H. Hofstetter, S. Schmidt, C. Brunner, H. Wekerle et al., Repertoire dynamics of autoreactive T cells in multiple sclerosis patients and healthy subjects: epitope spreading versus clonal persistence, Brain, pp.508-526, 2000.

J. L. Croxford, J. K. Olson, and S. D. Miller, Epitope spreading and molecular mimicry as triggers of autoimmunity in the Theiler's virus-induced demyelinating disease model of multiple sclerosis, Autoimmun Rev, vol.1, pp.251-60, 2002.

B. Gran, D. Gestri, A. Sottini, E. Quiròs-roldàn, A. Bettinardi et al., Detection of skewed T-cell receptor V-beta gene usage in the peripheral blood of patients with multiple sclerosis, J Neuroimmunol, vol.85, pp.22-32, 1998.

D. Laplaud, C. Ruiz, S. Wiertlewski, S. Brouard, L. Berthelot et al., Blood T-cell receptor beta chain transcriptome in multiple sclerosis. Characterization of the T cells with altered CDR3 length distribution, Brain, vol.127, pp.981-95, 2004.

Y. Matsumoto, W. K. Yoon, Y. Jee, K. Fujihara, T. Misu et al., Complementarity-determining region 3 spectratyping analysis of the TCR repertoire in multiple sclerosis, J Immunol, vol.170, p.4846, 2003.

J. Monteiro, R. Hingorani, R. Peroglizzi, B. Apatoff, and P. K. Gregersen, Oligoclonality of CD8+ T cells in multiple sclerosis, Autoimmunity, vol.23, pp.127-165, 1996.

P. A. Muraro, L. Bonanni, B. Mazzanti, A. Pantalone, E. Traggiai et al., Short-term dynamics of circulating T cell receptor V beta repertoire in relapsing-remitting MS, J Neuroimmunol, vol.127, pp.105-109, 2002.

T. Démoulins, F. Mouthon, P. Clayette, D. Bequet, G. Gachelin et al., The same TCR (N)Dbeta(N)Jbeta junctional region is associated with several different vbeta13 subtypes in a multiple sclerosis patient at the onset of the disease, Neurobiol Dis, vol.14, pp.470-82, 2003.

M. Jacobsen, S. Cepok, E. Quak, M. Happel, R. Gaber et al., Oligoclonal expansion of memory CD8+ T cells in cerebrospinal fluid from multiple sclerosis patients, Brain, vol.125, pp.538-50, 2002.

P. Lozeron, D. Chabas, B. Duprey, O. Lyon-caen, and R. Liblau, T cell receptor V beta 5 and V beta 17 clonal diversity in cerebrospinal fluid and peripheral blood lymphocytes of multiple sclerosis patients, Mult Scler, vol.4, pp.154-61, 1998.

D. Laplaud, L. Berthelot, P. Miqueu, K. Bourcier, J. Moynard et al., Serial blood T cell repertoire alterations in multiple sclerosis patients; correlation with clinical and MRI parameters, J Neuroimmunol, vol.177, pp.151-60, 2006.

P. A. Muraro, R. Cassiani-ingoni, C. K. Packer, A. N. Sospedra, M. Martin et al., Clonotypic analysis of cerebrospinal fluid T cells during disease exacerbation and remission in a patient with multiple sclerosis, J Neuroimmunol, vol.171, pp.177-83, 2006.

M. P. Crawford, S. X. Yan, S. B. Ortega, R. S. Mehta, R. E. Hewitt et al., High prevalence of autoreactive, neuroantigen-specific CD8+ T cells in multiple sclerosis revealed by novel flow cytometric assay, Blood, vol.103, pp.4222-4253, 2004.

F. Lolli, H. Martini, A. Citro, D. Franceschini, E. Portaccio et al., Increased CD8+ T cell responses to apoptotic T cell-associated antigens in multiple sclerosis, J Neuroinflammation, vol.10, p.94, 2013.

Y. Zang, S. Li, V. M. Rivera, J. Hong, R. R. Robinson et al., Increased CD8+ cytotoxic T cell responses to myelin basic protein in multiple sclerosis, J Immunol, vol.172, pp.5120-5127, 2004.

A. Lossius, J. N. Johansen, F. Vartdal, H. Robins, J. ?altyt? et al., High-throughput sequencing of TCR repertoires in multiple sclerosis reveals intrathecal enrichment of EBV-reactive CD8+ T cells, Eur J Immunol, vol.44, pp.3439-52, 2014.

D. Sun, J. N. Whitaker, Z. Huang, D. Liu, C. Coleclough et al., Myelin antigen-specific CD8+ T cells are encephalitogenic and produce severe disease in C57BL/6 mice, J Immunol, vol.166, pp.7579-87, 2001.

M. L. Ford and B. D. Evavold, Specificity, magnitude, and kinetics of MOG-specific CD8+ T cell responses during experimental autoimmune encephalomyelitis, Eur J Immunol, vol.35, pp.76-85, 2005.

E. S. Huseby, D. Liggitt, T. Brabb, B. Schnabel, C. Ohlén et al., A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis, J Exp Med, vol.194, pp.669-76, 2001.

H. Lassmann, Experimental models of multiple sclerosis, Rev Neurol, vol.163, pp.651-656, 2007.

A. Saxena, J. Bauer, T. Scheikl, J. Zappulla, M. Audebert et al., Cutting edge: multiple sclerosis-like lesions induced by effector CD8 T cells recognizing a sequestered antigen on oligodendrocytes, J Immunol, vol.181, pp.1617-1638, 2008.

S. Na, Y. Cao, C. Toben, L. Nitschke, C. Stadelmann et al., Naive CD8 T-cells initiate spontaneous autoimmunity to a sequestered model antigen of the central nervous system, Brain, vol.131, pp.2353-65, 2008.

S. Na, H. Eujen, K. Göbel, S. G. Meuth, K. Martens et al., Antigenspecific blockade of lethal CD8 T-cell mediated autoimmunity in a mouse model of multiple sclerosis, J Immunol, vol.182, pp.6569-75, 2009.

H. L. Johnson, R. C. Willenbring, J. F. Manhart, W. A. Lafrance, S. J. Pirko et al., Perforin competent CD8 T cells are sufficient to cause immune-mediated blood-brain barrier disruption, PLoS One, vol.9, 2014.

I. Galea, M. Bernardes-silva, P. A. Forse, N. Van-rooijen, R. S. Liblau et al., An antigen-specific pathway for CD8 T cells across the blood-brain barrier, J Exp Med, vol.204, pp.2023-2053, 2007.

B. Sobottka, M. D. Harrer, U. Ziegler, K. Fischer, H. Wiendl et al., Collateral bystander damage by myelin-directed CD8+ T cells causes axonal loss, Am J Pathol, vol.175, pp.1160-1166, 2009.

L. T. Mars, J. Bauer, D. A. Gross, F. Bucciarelli, H. Firat et al., CD8 T cell responses to myelin oligodendrocyte glycoprotein-derived peptides in humanized HLA-A*0201-transgenic mice, J Immunol, vol.179, pp.5090-5098, 2007.

H. H. Wang, Y. Q. Dai, W. Qiu, Z. Q. Lu, F. H. Peng et al., Interleukin-17-secreting T cells in neuromyelitis optica and multiple sclerosis during relapse, J Clin Neurosci, vol.18, pp.1313-1320, 2011.

M. Huber, S. Heink, A. Pagenstecher, K. Reinhard, J. Ritter et al., IL-17A secretion by CD8+ T cells supports Th17-mediated autoimmune encephalomyelitis, J Clin Invest, vol.123, pp.247-60, 2013.

E. Billerbeck, Y. Kang, L. Walker, H. Lockstone, S. Grafmueller et al., Analysis of CD161 expression on human CD8+ T cells defines a distinct functional subset with tissue-homing properties, Proc Natl Acad Sci U S A, vol.107, pp.3006-3017, 2010.

E. Martin, E. Treiner, L. Duban, L. Guerri, H. Laude et al., Stepwise development of MAIT cells in mouse and human, PLoS Biol, vol.7, p.1000054, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00707793

L. J. Walker, Y. Kang, M. O. Smith, H. Tharmalingham, N. Ramamurthy et al., Human MAIT and CD8 cells develop from a pool of type-17 precommitted CD8+ T cells, Blood, vol.119, pp.422-455, 2012.

M. Dusseaux, E. Martin, N. Serriari, I. Peguillet, V. Premel et al., Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells, Blood, vol.117, pp.1250-1259, 2010.

O. Patel, L. Kjer-nielsen, L. Nours, J. Eckle, S. Birkinshaw et al., Recognition of vitamin B metabolites by mucosal-associated invariant T cells, Nat Commun, vol.4, p.2142, 2013.

R. Reantragoon, A. J. Corbett, I. G. Sakala, N. A. Gherardin, J. B. Furness et al., Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells, J Exp Med, vol.210, pp.2305-2325, 2013.

E. Treiner, L. Duban, S. Bahram, M. Radosavljevic, V. Wanner et al., Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1, Nature, vol.422, pp.164-173, 2003.

W. Chua, S. Kim, N. Myers, S. Huang, L. Yu et al., Endogenous MHC-related protein 1 is transiently expressed on the plasma membrane in a conformation that activates mucosal-associated invariant T cells, J Immunol, vol.186, 2011.

L. Bourhis, L. , M. E. Péguillet, I. Guihot, A. Froux et al., Antimicrobial activity of mucosal-associated invariant T cells, Nat Immunol, vol.11, pp.701-709, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00550333

M. C. Gold, S. Cerri, S. Smyk-pearson, M. E. Cansler, T. M. Vogt et al., Human mucosal associated invariant T cells detect bacterially infected cells, PLoS Biol, vol.8, p.1000407, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00707307

A. Meierovics, W. Yankelevich, and S. C. Cowley, MAIT cells are critical for optimal mucosal immune responses during in vivo pulmonary bacterial infection, Proc Natl Acad Sci U S A, vol.110, pp.3119-3147, 2013.

M. Teunissen, N. G. Yeremenko, D. Baeten, S. Chielie, P. I. Spuls et al., The IL-17A-producing CD8+ T-cell population in psoriatic lesional skin comprises mucosa-associated invariant T cells and conventional T cells, J Invest Dermatol, vol.134, pp.2898-907, 2014.

N. Serriari, M. Eoche, L. Lamotte, J. Lion, M. Fumery et al., Innate mucosal-associated invariant T (MAIT) cells are activated in inflammatory bowel diseases: MAIT cells in IBD, Clin Exp Immunol, vol.176, pp.266-74, 2014.

M. R. Dunne, L. Elliott, S. Hussey, M. N. Kelly, J. Doherty et al., Persistent changes in circulating and intestinal ?? T cell subsets, invariant natural killer T cells and mucosal-associated invariant T cells in children and adults with coeliac disease, PLoS One, vol.8, 2013.

M. Eidson, J. Wahlstrom, A. M. Beaulieu, B. Zaidi, S. E. Carsons et al., Altered development of NKT cells, ?? T cells, CD8 T cells and NK cells in a PLZF deficient patient, PLoS One, vol.6, 2011.

Y. Miyazaki, S. Miyake, A. Chiba, O. Lantz, and T. Yamamura, Mucosal-associated invariant T cells regulate Th1 response in multiple sclerosis, Int Immunol, vol.23, pp.529-564, 2011.

S. V. Abrahamsson, D. F. Angelini, A. N. Dubinsky, E. Morel, U. Oh et al., Non-myeloablative autologous haematopoietic stem cell transplantation expands regulatory cells and depletes IL-17 producing mucosal-associated invariant T cells in multiple sclerosis, Brain, vol.136, pp.2888-903, 2013.

Z. Illes, Accumulation of V 7.2-J 33 invariant T cells in human autoimmune inflammatory lesions in the nervous system, Int Immunol, vol.16, pp.223-253, 2004.

K. Held, L. Bhonsle-deeng, K. Siewert, W. Sato, E. Beltrán et al., ?? T-cell receptors from multiple sclerosis brain lesions show MAIT cell-related features, Neurol Neuroimmunol Neuroinflamm, vol.2, p.107, 2015.

A. Willing, O. A. Leach, F. Ufer, K. E. Attfield, K. Steinbach et al., CD8 + MAIT cells infiltrate into the CNS and alterations in their blood frequencies correlate with IL-18 serum levels in multiple sclerosis, Eur J Immunol, vol.44, pp.3119-3147, 2014.

J. R. Fergusson, V. M. Fleming, and P. Klenerman, CD161-expressing human T cells, Front Immunol, vol.2, p.36, 2011.

P. K. Dagur, A. Biancotto, E. Stansky, H. N. Sen, R. B. Nussenblatt et al., Secretion of interleukin-17 by CD8+ T cells expressing CD146 (MCAM), Clin Immunol, vol.152, pp.36-47, 2014.

Q. Ji, L. Castelli, and J. M. Goverman, MHC class I-restricted myelin epitopes are cross-presented by Tip-DCs that promote determinant spreading to CD8 + T cells, Nat Immunol, vol.14, pp.254-61, 2013.