F. Sallusto, D. Lenig, R. Förster, M. Lipp, and A. Lanzavecchia, Two subsets of memory T lymphocytes with distinct homing potentials and effector functions, Nature, vol.401, pp.708-720, 1999.

V. Appay, R. A. Van-lier, F. Sallusto, and M. Roederer, Phenotype and function of human T lymphocyte subsets: consensus and issues, Cytometry A, vol.73, pp.975-83, 2008.

X. Chen, Q. Yanrong, and S. Wu, The Warburg effect: evolving interpretations of an established concept, Free Radic Biol Med, vol.79, pp.253-63, 2015.

O. H. Warburg, The chemical constitution of respiration ferment, Science, vol.68, pp.437-480, 1928.

N. J. Maciver, R. D. Michalek, and J. C. Rathmell, Metabolic regulation of T lymphocytes, Annu Rev Immunol, vol.31, pp.259-83, 2013.

T. Gaber, C. Strehl, B. Sawitzki, P. Hoff, and F. Buttgereit, Cellular energy metabolism in T-lymphocytes, Int Rev Immunol, vol.34, issue.1, pp.34-49, 2015.

M. Bental and C. Deutsch, Metabolic changes in activated T cells: an NMR study of human peripheral blood lymphocytes, Magn Reson Med, vol.29, issue.3, pp.317-343, 1993.

M. G. Vander-heiden, L. C. Cantley, and C. B. Thompson, Understanding the Warburg effect: the metabolic requirements of cells proliferation, Science, vol.324, issue.5930, pp.1029-1062, 2009.

K. N. Pollizzi and J. D. Powell, Integrating canonical and metabolic signalling programmes in the regulation of T cell responses, Nat Rev Immunol, vol.14, issue.7, pp.435-481, 2014.

L. D. Cornell, N. Smith, R. Colvin, and R. B. , Kidney transplantation: mechanisms of rejection and acceptance, Annu Rev Pathol, vol.3, pp.189-220, 2008.

F. Issa, A. Schiopu, and K. J. Wood, Role of T cells in graft rejection and transplantation tolerance, Exp Rev Clin Immunol, vol.6, issue.1, pp.155-69, 2010.

V. Bueno, D. Nefrologia, D. , D. Medicina, and E. P. , The role of CD8 + T cells during allograft rejection, Braz J Med Biol Res, vol.35, pp.1247-58, 2002.

K. J. Wood and R. Goto, Mechanisms of rejection: current perspectives, Transplantation, vol.93, issue.1, p.1, 2012.

H. Robertson, J. Wheeler, J. A. Kirby, and A. R. Morley, Renal allograft rejection -in situ demonstration of cytotoxic intratubular cells, Transplantation, issue.10, pp.1546-1555, 1996.

A. S. Diamond and R. G. Gill, An essential contribution by IFN-gamma to CD8+ T cell-mediated rejection of pancreatic islet allografts, J Immunol, vol.165, issue.1, pp.247-55, 2000.

Y. Yamada, S. Boskovic, A. Aoyama, T. Murakami, P. Putheti et al., Overcoming memory T-cell responses for induction of delayed tolerance in nonhuman primates, Am J Transplant, vol.12, issue.2, pp.330-370, 2012.

I. Koyama, O. Nadazdin, S. Boskovic, T. Ochiai, R. N. Smith et al., Depletion of CD8 memory T cells for induction of tolerance of a previously transplanted kidney allograft, Am J Transplant, vol.7, pp.1055-61, 2007.

M. G. Betjes, R. W. Meijers, E. A. De-wit, W. Weimar, and N. H. Litjens, Terminally differentiated CD8+ Temra cells are associated with the risk for acute kidney allograft rejection, Transplantation, vol.94, issue.1, pp.63-72, 2012.

D. Baeten, S. Louis, C. Braud, C. Braudeau, C. Ballet et al., Phenotypically and functionally distinct CD8+ lymphocyte populations in long-term drugfree tolerance and chronic rejection in human kidney graft recipients, J Am Soc Nephrol, vol.17, pp.294-304, 2006.

S. Segundo, D. Ballesteros, M. Á. Naranjo, S. Zurbano, F. Miñambres et al., Increased numbers of circulating CD8 effector memory T cells before transplantation enhance the risk of acute rejection in lung transplant recipients, PLoS One, vol.8, issue.11, p.80601, 2013.

L. Ordonez, I. Bernard, M. Chabod, J. F. Augusto, V. Lauwers-cances et al., A higher risk of acute rejection of human kidney allografts can be predicted from the level of CD45RC expressed by the recipients' CD8 T cells, PLoS One, vol.8, issue.7, p.69791, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-02164657

M. Yap, F. Boeffard, E. Clave, A. Pallier, R. Danger et al., Expansion of highly differentiated cytotoxic terminally differentiated effector memory CD8+ T cells in a subset of clinically stable kidney transplant recipients: a potential marker for late graft dysfunction, J Am Soc Nephrol, vol.25, issue.8, pp.1856-68, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-02163547

A. J. Ligocki and J. Y. Niederkorn, Advances on non-CD4 + Foxp3+ T regulatory cells, Transplantation, issue.8, p.1, 2015.

R. Ciubotariu, R. Vasilescu, E. Ho, P. Cinti, C. Cancedda et al., Detection of T suppressor cells in patients with organ allografts, Hum Immunol, vol.62, issue.00, pp.15-20, 2001.

E. Picarda, S. Bézie, V. Venturi, K. Echasserieau, E. Mérieau et al., MHC-derived allopeptide activates TCR-biased CD8+ tregs and suppresses organ rejection, J Clin Invest, vol.124, issue.6, pp.2497-512, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-02167782

E. Xystrakis, A. S. Dejean, I. Bernard, P. Druet, R. Liblau et al., Identification of a novel natural regulatory CD8 T-cell subset and analysis of its mechanism of regulation, Blood, vol.104, issue.10, pp.3294-301, 2009.

M. Suzuki, A. L. Jagger, C. Konya, Y. Shimojima, S. Pryshchep et al., CD8+CD45RA+CCR7+FOXP3+ T cells with immunosuppressive properties: a novel subset of inducible human regulatory T cells, J Immunol, vol.189, issue.5, 2012.

Y. Liu, N. Chen, G. Chen, and P. You, The protective effect of CD8+CD28-T suppressor cells on the acute rejection responses in rat liver transplantation, Transplant Proc, vol.39, issue.10, pp.3396-403, 2007.

Y. X. Lin, L. N. Yan, B. Li, L. L. Wang, T. F. Wen et al., A significant expansion of CD8+ CD28-T-suppressor cells in adult-to-adult living donor liver transplant recipients, Transplant Proc, issue.10, pp.4229-4260, 2009.

X. L. Li, S. Ménoret, S. Bezie, L. Caron, D. Chabannes et al., Mechanism and localization of CD8 regulatory T cells in a heart transplant model of tolerance, J Immunol, vol.185, issue.2, pp.823-856, 2010.

M. Guppy, E. Greiner, and K. Brand, The role of the crabtree effect and an endogenous fuel in the energy metabolism of resting and proliferating thymocytes

J. A. Wofford, H. L. Wieman, S. R. Jacobs, Y. Zhao, and J. C. Rathmell, IL-7 promotes Glut1 trafficking and glucose uptake via STAT5-mediated activation of Akt to support T-cell survival, Eur J Biochem, vol.212, issue.1, pp.2101-2112, 1993.

C. Pallard, A. P. Stegmann, T. Van-kleffens, F. Smart, A. Venkitaraman et al., Distinct roles of the phosphatidylinositol 3-kinase and STAT5 pathways in IL-7-mediated development of human thymocyte precursors, Immunity, vol.10, issue.5, pp.525-560, 1999.

A. M. Crawley, A. Vranjkovic, E. Faller, M. Mcguinty, A. Busca et al.,

/. Jak and . Stat, PI3K signaling pathways have both common and distinct roles in IL-7-mediated activities in human CD8+ T cells, J Leukoc Biol, vol.95, issue.1, pp.117-144, 2014.

M. Lochner, L. Berod, and T. Sparwasser, Fatty acid metabolism in the regulation of T cell function, Trends Immunol, vol.36, issue.2, pp.81-91, 2015.

D. O'sullivan, G. J. Van-der-windt, S. C. Huang, J. D. Curtis, C. H. Chang et al., Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development, Immunity, vol.41, issue.1, pp.75-88, 2014.

E. L. Pearce, M. C. Walsh, P. J. Cejas, G. M. Harms, H. Shen et al., Enhancing CD8 T-cell memory by modulating fatty acid metabolism, Nature, vol.460, issue.7251, pp.103-110, 2009.

G. Cui, M. M. Staron, S. M. Gray, P. Ho, R. A. Amezquita et al., IL-7-induced glycerol transport and TAG synthesis promotes memory CD8(+) T cell longevity, Cell, vol.161, issue.4, pp.750-61, 2015.

K. Araki, A. P. Turner, V. O. Shaffer, S. Gangappa, S. A. Keller et al., mTOR regulates memory CD8 T-cell differentiation, Nature, vol.460, issue.7251, pp.108-120, 2009.

I. J. Sipula, N. F. Brown, and G. Perdomo, Rapamycin-mediated inhibition of mammalian target of rapamycin in skeletal muscle cells reduces glucose utilization and increases fatty acid oxidation, Metabolism, vol.55, issue.12, pp.1637-1681, 2006.

X. Xu, L. Ye, K. Araki, and R. Ahmed, MTOR, linking metabolism and immunity, Semin Immunol, vol.24, issue.6, pp.429-464, 2012.

K. Araki, B. Youngblood, and R. Ahmed, The role of mTOR in memory CD8+ T-cell differentiation, Immunol Rev, vol.235, issue.1, pp.234-277, 2010.

S. Y. Lunt and M. G. Vander-heiden, Aerobic glycolysis: meeting the metabolic requirements of cell proliferation, Annu Rev Cell Dev Biol, vol.27, issue.1, pp.441-64, 2011.

K. A. Frauwirth, J. L. Riley, M. H. Harris, R. V. Parry, J. C. Rathmell et al., The CD28 signaling pathway regulates glucose metabolism, Immunity, vol.16, issue.6, pp.769-77, 2002.

S. R. Jacobs, C. E. Herman, N. J. Maciver, J. A. Wofford, H. L. Wieman et al., Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways, J Immunol, vol.180, issue.7, pp.4476-86, 2008.

R. V. Parry, K. Reif, G. Smith, D. M. Sansom, B. A. Hemmings et al., Ligation of the T cell co-stimulatory receptor CD28 activates the serine-threonine protein kinase protein kinase B, Eur J Immunol, vol.27, issue.10, pp.2495-501, 1997.

P. M. Gubser, G. R. Bantug, L. Razik, M. Fischer, S. Dimeloe et al., Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch, Nat Immunol, vol.14, issue.10, pp.1064-72, 2013.

C. H. Chang, J. D. Curtis, L. B. Maggi, B. Faubert, A. V. Villarino et al., Posttranscriptional control of T cell effector function by aerobic glycolysis, Cell, vol.153, issue.6, pp.1239-51, 2013.

G. J. Van-der-windt, O. 'sullivan, D. Everts, B. Huang, S. C. Buck et al., CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability, Proc Natl Acad Sci U S A, vol.110, issue.35, pp.14336-14377, 2013.

E. L. Carr, A. Kelman, G. S. Wu, R. Gopaul, E. Senkevitch et al., Glutamine uptake and metabolism are coordinately regulated by ERK/ MAPK during T lymphocyte activation, J Immunol, vol.185, issue.2, pp.1037-1081, 2010.

G. Van-der-windt and P. El, Metabolic switching and fuel choice during T-cell differentiation and memory development, Immunol Rev, vol.249, issue.1, pp.27-42, 2012.

F. Wasinski, M. F. Gregnani, F. H. Ornellas, A. V. Bacurau, N. O. Câmara et al., Lymphocyte glucose and glutamine metabolism as targets of the anti-inflammatory and immunomodulatory effects of exercise, Mediators Inflamm, vol.2014, pp.1-10, 2014.

D. O'sullivan and P. El, Targeting T cell metabolism for therapy, Trends Immunol, vol.36, issue.2, 2015.

C. M. Cham and T. F. Gajewski, Glucose availability regulates IFN-gamma production and p70S6 kinase activation in CD8+ effector T cells, J Immunol, vol.174, issue.8, pp.4670-4677, 2005.

M. Sukumar, J. Liu, Y. Ji, M. Subramanian, J. G. Crompton et al., Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function, J Clin Invest, vol.123, issue.10, pp.4479-88, 2013.

R. Wang, C. P. Dillon, L. Z. Shi, S. Milasta, R. Carter et al., The transcription factor myc controls metabolic reprogramming upon T lymphocyte activation, Immunity, vol.35, issue.6, pp.871-82, 2011.

L. V. Sinclair, J. Rolf, E. Emslie, Y. B. Shi, P. M. Taylor et al., Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation, Nat Immunol, vol.14, issue.5, pp.500-508, 2013.

K. Singer, M. Kastenberger, E. Gottfried, C. G. Hammerschmied, M. Büttner et al., Warburg phenotype in renal cell carcinoma: high expression of glucose-transporter 1 (GLUT-1) correlates with low CD8+ T-cell infiltration in the tumor, Int J Cancer, vol.128, issue.9, pp.2085-95, 2011.

D. Anastasiou, G. Poulogiannis, J. M. Asara, M. B. Boxer, J. K. Jiang et al., Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses, Science, vol.334, issue.6060, pp.1278-83, 2011.

A. N. Macintyre, V. A. Gerriets, A. G. Nichols, R. D. Michalek, M. C. Rudolph et al., The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function, Cell Metab, vol.20, issue.1, pp.61-72, 2014.

T. Korn, T. Magnus, K. Toyka, and S. Jung, Modulation of effector cell functions in experimental autoimmune encephalomyelitis by leflunomide -mechanisms independent of pyrimidine depletion, J Leukoc Biol, vol.76, issue.5, pp.950-60, 2004.

P. O'connor, J. S. Wolinsky, C. Confavreux, G. Comi, L. Kappos et al., Randomized trial of oral teriflunomide for relapsing multiple sclerosis, N Engl J Med, vol.365, issue.14, pp.1293-303, 2011.

L. Texier, L. , T. P. Lavault, A. Usal, C. Merieau et al., Long-term allograft tolerance is characterized by the accumulation of B cells exhibiting an inhibited profile, Am J Transplant, vol.11, issue.3, pp.429-467, 2011.

J. Blagih, F. Coulombe, E. E. Vincent, F. Dupuy, G. Galicia-vázquez et al., The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo, Immunity, vol.42, issue.1, pp.41-54, 2015.

Y. Yin, S. C. Choi, Z. Xu, D. J. Perry, H. Seay et al., Normalization of CD4 + T cell metabolism reverses lupus, Sci Transl Med, vol.7, issue.274, pp.1-13, 2015.

K. A. Frauwirth and C. B. Thompson, Regulation of T lymphocyte metabolism, J Immunol, vol.172, issue.8, pp.4661-4666, 2004.

C. Mary, F. Coulon, N. Poirier, N. Dilek, B. Martinet et al., Antagonist properties of monoclonal antibodies targeting human CD28, MAbs, vol.5, issue.1, pp.47-55, 2013.

N. Poirier, C. Mary, N. Dilek, J. Hervouet, D. Minault et al., Preclinical efficacy and immunological safety of FR104, an antagonist anti-CD28 monovalent fab? antibody, Am J Transplant, vol.12, issue.10, pp.2630-2670, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-02167934

N. Poirier, N. Dilek, C. Mary, S. Ville, F. Coulon et al., FR104, an antagonist anti-CD28 monovalent fab? antibody, prevents alloimmunization and allows calcineurin inhibitor minimization in nonhuman primate renal allograft, Am J Transplant, vol.15, issue.1, pp.88-100, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-02148443

A. W. , Inhibiting the Akt pathway in cancer treatment: three leading candidates, P T, vol.36, issue.4, pp.225-232, 2011.

A. Eid, R. Friedman, K. M. Mkrtichyan, M. Walens, A. King et al., Akt1 and -2 inhibition diminishes terminal differentiation and enhances central memory CD8

+. Oncoimmunology, , vol.4, 2015.

X. Zhao and J. Guan, Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis, Adv Drug Deliv Rev, vol.63, issue.8, pp.610-615, 2011.

B. D. Crompton, A. L. Carlton, A. R. Thorner, A. L. Christie, J. Du et al., High-throughput tyrosine kinase activity profiling identifies FAK as a candidate therapeutic target in Ewing sarcoma, Cancer Res, vol.73, issue.9, pp.2873-83, 2013.

A. B. Van-der-waart, N. M. Van-de-weem, F. Maas, C. S. Kramer, M. G. Kester et al., Inhibition of Akt signaling promotes the generation of superior tumor-reactive T cells for adoptive immunotherapy, Blood, vol.124, issue.23, pp.3490-500, 2014.

F. C. Edozie, E. A. Nova-lamperti, G. A. Povoleri, C. Scottà, S. John et al., Regulatory T-cell therapy in the induction of transplant tolerance: the issue of subpopulations, Transplantation, vol.98, issue.4, pp.370-379, 2014.

J. Heitman, N. R. Movva, and M. N. Hall, Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast, Science, vol.253, issue.5022, pp.905-914, 1991.

E. J. Brown, M. W. Albers, T. B. Shin, K. Ichikawa, C. T. Keith et al., A mammalian protein targeted by G1-arresting rapamycin-receptor complex, Nature, vol.369, issue.6483, pp.756-764, 1994.

M. Laplante and D. M. Sabatini, mTOR signaling at a glance, J Cell Sci, pp.3589-94, 2009.

M. Laplante and D. M. Sabatini, Regulation of mTORC1 and its impact on gene expression at a glance, J Cell Sci, pp.1713-1722, 2013.

R. J. Deberardinis, J. J. Lum, and C. B. Thompson, Phosphatidylinositol 3-kinase-dependent modulation of carnitine palmitoyltransferase 1A expression regulates lipid metabolism during hematopoietic cell growth, J Biol Chem, issue.49, pp.37372-80, 2006.

T. Porstmann, C. R. Santos, B. Griffiths, M. Cully, M. Wu et al., SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth, Cell Metab, vol.8, issue.3, pp.224-260, 2008.

S. N. Sehgal, Sirolimus: its discovery, biological properties, and mechanism of action, Transplant Proc, vol.35, issue.3, pp.211-213, 2003.

P. F. Halloran, Immunosuppressive drugs for kidney transplantation, N Engl J Med, vol.351, pp.2715-2745, 2004.

M. Battaglia, A. Stabilini, B. Migliavacca, J. Horejs-hoeck, T. Kaupper et al., Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients, J Immunol, vol.177, issue.12, pp.8338-8385, 2006.

B. El-essawy, P. Putheti, W. Gao, and T. B. Strom, Rapamycin generates graft-homing murine suppressor CD8+ T cells that confer donor-specific graft protection, Cell Transplant, vol.20, pp.1759-69, 2011.

C. M. Barbon, J. K. Davies, A. Voskertchian, R. H. Kelner, L. L. Brennan et al., Alloanergization of human T cells results in expansion of alloantigen-specific CD8(+) CD28(-) suppressor cells, Am J Transplant, vol.14, pp.305-323, 2014.