P. A. Suazo, E. I. Tognarelli, A. M. Kalergis, and P. A. González, Herpes simplex virus 2 infection: molecular association with HIV and novel microbicides to prevent disease, Medical Microbiology and Immunology, vol.204, issue.2, pp.161-176, 2015.

B. P. Yawn and D. Gilden, The global epidemiology of herpes zoster, Neurology, vol.81, issue.10, pp.928-930, 2013.

, Seroprevalence of herpes simplex virus type 2 among persons aged 14-49 YearsUnited States, Morbidity and Mortality Weekly Report, vol.59, issue.15, pp.456-459, 2005.

K. J. Looker, G. P. Garnett, and G. P. Schmid, An estimate of the global prevalence and incidence of herpes simplex virus type 2 infection, Bulletin of the World Health Organization, vol.86, issue.10, pp.805-812, 2008.

N. Dickson, A. Righarts, T. Van-roode, C. Paul, J. Taylor et al., HSV-2 incidence by sex over four age periods to age 38 in a birth cohort, Sexually Transmitted Infections, vol.90, issue.3, pp.243-245, 2014.

B. Grinde, Herpesviruses: latency and reactivation-viral strategies and host response, Journal of Oral Microbiology, vol.5, p.22766, 2013.

A. W. Kolb, C. Ané, and C. R. Brandt, Using HSV-1 genome phylogenetics to track past human migrations, Article ID e76267, vol.8, issue.10, 2013.

B. Roizman and R. J. Whitley, The nine ages of herpes simplex virus, Herpes, vol.8, issue.1, pp.23-27, 2001.

C. M. Roberts, J. R. Pfister, and S. J. Spear, Increasing proportion of herpes simplex virus type 1 as a cause of genital herpes infection in college students, Sexually Transmitted Diseases, vol.30, issue.10, pp.797-800, 2003.

S. Buxbaum, M. Geers, G. Gross, H. Schöfer, H. F. Rabenau et al., Epidemiology of herpes simplex virus types 1 and 2 in Germany: what has changed?, Medical Microbiology and Immunology, vol.192, issue.3, pp.177-181, 2003.

P. V. Coyle, H. J. O'neill, D. E. Wyatt, C. Mccaughey, S. Quah et al., Emergence of herpes simplex type 1 as the main cause of recurrent genital ulcerative disease in women in Northern Ireland, Journal of Clinical Virology, vol.27, issue.1, pp.22-29, 2003.

V. S. Pereira, R. N. Moizeis, T. A. Fernandes, J. M. Araújo, R. V. Meissner et al., Herpes simplex virus type 1 is the main cause of genital herpes in women of Natal, Brazil, European Journal of Obstetrics Gynecology and Reproductive Biology, vol.161, issue.2, pp.190-193, 2012.

F. Xu, M. R. Sternberg, and B. J. Kottiri, Trends in herpes simplex virus type 1 and type 2 seroprevalence in the United States, The Journal of the American Medical Association, vol.296, issue.8, pp.964-973, 2006.

R. Horowitz, S. Aierstuck, E. A. Williams, and B. Melby, Herpes simplex virus infection in a university health population: clinical manifestations, epidemiology, and implications, Journal of American College Health, vol.59, issue.2, pp.69-74, 2010.

D. I. Bernstein, A. R. Bellamy, and E. W. Hook, Epidemiology, clinical presentation, and antibody response to primary infection with herpes simplex virus type 1 and type 2 in young women, Clinical Infectious Diseases, vol.56, issue.3, pp.344-351, 2013.

Z. Samra, E. Scherf, and M. Dan, Herpes simplex virus type 1 is the prevailing cause of genital herpes in the Tel Aviv area, Israel, Sexually Transmitted Diseases, vol.30, issue.10, pp.794-796, 2003.

K. Manavi, A. Mcmillan, and M. Ogilvie, Herpes simplex virus type 1 remains the principal cause of initial anogenital herpes in Edinburgh, Scotland, Sexually Transmitted Diseases, vol.31, issue.5, pp.322-324, 2004.

O. Kortekangas-savolainen, E. Orhanen, T. Puodinketo, and T. Vuorinen, Epidemiology of genital herpes simplex virus type 1 and 2 infections in Southwestern Finland during a 10-year period, Sexually Transmitted Diseases, vol.41, issue.4, pp.268-271, 2003.

R. F. Nieuwenhuis, G. J. Van-doornum, P. G. Mulder, H. A. Neumann, and W. I. Van-der-meijden, Importance of herpes simplex virus type-1 (HSV-1) in primary genital herpes, Acta Dermato-Venereologica, vol.86, issue.2, pp.129-134, 2006.

N. Ryder, F. Jin, A. M. Mcnulty, A. E. Grulich, and B. Donovan, Increasing role of herpes simplex virus type 1 in first-episode anogenital herpes in heterosexual women and younger men who have sex with men, Sexually Transmitted Infections, vol.85, issue.6, pp.416-419, 1992.

A. V. Farooq and D. Shukla, Herpes simplex epithelial and stromal keratitis: an epidemiologic update, Survey of Ophthalmology, vol.57, issue.5, pp.448-462, 2012.

S. Kaye and A. Choudhary, Herpes simplex keratitis, Progress in Retinal and Eye Research, vol.25, issue.4, pp.355-380, 2006.

W. E. Lafferty, R. W. Coombs, J. Benedetti, C. Critchlow, and L. Corey, Recurrences after oral and genital herpes simplex virus infection. Influence of site of infection and viral type, The New England Journal of Medicine, vol.316, issue.23, pp.1444-1449, 1987.

L. Solomon, M. J. Cannon, M. Reyes, J. M. Graber, N. T. Wetherall et al., Epidemiology of recurrent genital herpes simplex virus types 1 and 2, Sexually Transmitted Infections, vol.79, issue.6, pp.456-459, 2003.

M. Janier, C. Scieux, and R. Méouchi, Virological, serological and epidemiological study of 255 consecutive cases of genital herpes in a sexually transmitted disease clinic of Paris (France): a prospective study, International Journal of STD and AIDS, vol.17, issue.1, pp.44-49, 2006.

J. Benedetti, L. Corey, and R. Ashley, Recurrence rates in genital herpes after symptomatic first-episode infection, Annals of Internal Medicine, vol.121, issue.11, pp.847-854, 1994.

J. N. Wasserheit, Epidemiological synergy: interrelationships between human immunodeficiency virus infection and other sexually transmitted diseases, Sexually Transmitted Diseases, vol.19, issue.2, pp.61-77, 1992.

E. E. Freeman, H. A. Weiss, J. R. Glynn, P. L. Cross, J. A. Whitworth et al., Herpes simplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal studies, AIDS, vol.20, issue.1, pp.73-83, 2006.

R. V. Barnabas, J. N. Wasserheit, and Y. Huang, Impact of herpes simplex virus type 2 on HIV-1 acquisition and progression in an HIV vaccine trial (the step study), Journal of Acquired Immune Deficiency Syndromes, vol.57, issue.3, pp.238-244, 2011.

L. Masson, K. Mlisana, and F. Little, Defining genital tract cytokine signatures of sexually transmitted infections and bacterial vaginosis in women at high risk of HIV infection: a cross-sectional study, Sexually Transmitted Infections, vol.90, issue.8, pp.580-587, 2014.

B. Nixon, E. Fakioglu, and M. Stefanidou, Genital Herpes simplex virus Type 2 infection in humanized HIV-transgenic mice triggers HIV shedding and is associated with greater neurological disease, Journal of Infectious Diseases, vol.209, issue.4, pp.510-522, 2014.

A. Mujugira, A. S. Magaret, J. M. Baeten, C. Celum, and J. Lingappa, Risk factors for HSV-2 infection among sexual partners of HSV-2/HIV-1 Co-infected persons, BMC Research Notes, vol.4, p.64, 2011.

A. Mujugira, A. S. Magaret, and C. Celum, Daily acyclovir to decrease herpes simplex virus type 2 (HSV-2) transmission from HSV-2/HIV-1 coinfected persons: a randomized controlled trial, The Journal of Infectious Diseases, vol.208, issue.9, pp.1366-1374, 2013.

T. Schacker, J. Zeh, H. Hu, M. Shaughnessy, and L. Corey, Changes in plasma human immunodeficiency virus type 1 RNA associated with herpes simplex virus reactivation and suppression, Journal of Infectious Diseases, vol.186, issue.12, pp.1718-1725, 2002.

X. Zhu, Z. S. Muhammad, J. Wang, W. Lin, S. Guo et al., HSV-2 vaccine: current status and insight into factors for developing an efficient vaccine, Viruses, vol.6, issue.2, pp.371-390, 2014.

A. R. Retamal-díaz, P. A. Suazo, and I. Garrido, Immune evasion by herpes simplex virus, Revista Chilena de Infectología, vol.32, issue.1, pp.58-71, 2015.

W. P. Halford, Antigenic breadth: a missing ingredient in HSV-2 subunit vaccines, Expert Review of Vaccines, vol.13, issue.6, pp.691-710, 2014.

T. M. Cairns, Z. Huang, and J. C. Whitbeck, Dissection of the antibody response against herpes simplex virus glycoproteins in naturally infected humans, Journal of Virology, vol.88, issue.21, pp.12612-12622, 2014.

A. A. Chentoufi, E. Kritzer, D. M. Yu, A. B. Nesburn, and L. Benmohamed, Towards a rational design of an asymptomatic clinical herpes vaccine: the old, the new, and the unknown, Clinical & Developmental Immunology, vol.2012, 2012.

R. B. Belshe, T. C. Heineman, and D. I. Bernstein, Correlate of immune protection against HSV-1 genital disease in vaccinated women, The Journal of Infectious Diseases, vol.209, issue.6, pp.828-836, 2014.

R. B. Belshe, P. A. Leone, and D. I. Bernstein, Efficacy results of a trial of a herpes simplex vaccine, The New England Journal of Medicine, vol.366, issue.1, pp.34-43, 2012.

H. Yao, P. Ling, Y. Tung, S. Hsu, and S. Chen, In vivo reactivation of latent herpes simplex virus 1 in mice can occur in the brain before occurring in the trigeminal ganglion, Journal of Virology, vol.88, issue.19, pp.11264-11270, 2014.

T. P. Margolis, Y. Imai, L. Yang, V. Vallas, and P. R. Krause, Herpes Simplex Virus type 2 (HSV-2) establishes latent infection in a different population of ganglionic neurons than HSV-1: role of latency-associated transcripts, Journal of Virology, vol.81, issue.4, pp.1872-1878, 2007.

M. I. Gonzalez and N. A. Sanjuan, Striated muscle involvement in experimental oral infection by herpes simplex virus type 1, Journal of Oral Pathology & Medicine, vol.42, issue.6, pp.486-490, 2013.

M. M. Linehan, S. Richman, C. Krummenacher, R. J. Eisenberg, G. H. Cohen et al., In vivo role of nectin-1 in entry of herpes simplex virus type 1 (HSV-1) and HSV-2 through the vaginal mucosa, Journal of Virology, vol.78, issue.5, pp.2530-2536, 2004.

J. Rajcani and A. Vojvodova, The role of herpes simplex virus glycoproteins in the virus replication cycle, Acta Virologica, vol.42, issue.2, pp.103-118, 1998.

J. Akhtar and D. Shukla, Viral entry mechanisms: cellular and viral mediators of herpes simplex virus entry, The FEBS Journal, vol.276, issue.24, pp.7228-7236, 2009.

A. Turner, B. Bruun, T. Minson, and H. Browne, Glycoproteins gB, gD, and gHgL of herpes simplex virus type 1 are necessary and sufficient to mediate membrane fusion in a Cos cell transfection system, Journal of Virology, vol.72, issue.1, pp.873-875, 1998.

E. Avitabile, C. Forghieri, and G. Campadelli-fiume, Cross talk among the glycoproteins involved in herpes simplex virus entry and fusion: the interaction between gB and gH/gL does not necessarily require gD, Journal of Virology, vol.83, issue.20, pp.10752-10760, 2009.

D. Atanasiu, T. M. Cairns, and J. C. Whitbeck, Regulation of herpes simplex virus gB-induced cell-cell fusion by mutant forms of gH/gL in the absence of gD and cellular receptors, mBio, vol.4, issue.2, pp.46-59, 2013.

T. Satoh, J. Arii, and T. Suenaga, PILR is a herpes simplex virus-1 entry coreceptor that associates with glycoprotein B, Cell, vol.132, issue.6, pp.935-944, 2008.

J. Arii, J. Wang, and T. Morimoto, A single-amino-acid substitution in herpes simplex virus 1 envelope glycoprotein B at a site required for binding to the paired immunoglobulinlike type 2 receptor (PILR ) abrogates PILR -dependent viral entry and reduces pathogenesis, Journal of Virology, vol.84, issue.20, pp.10773-10783, 2010.

B. C. Herold, D. Wudunn, M. Soltys, and P. G. Spear, Glycoprotein C of herpes simplex virus type 1 plays a principal role in the adsorption of virus to cells and in infectivity, Journal of Virology, vol.65, issue.3, pp.1090-1098, 1991.

H. Matsushima, A. Utani, and H. Endo, The expression of nectin-1 in normal human skin and various skin tumours, British Journal of Dermatology, vol.148, issue.4, pp.755-762, 2003.

M. W. Steinberg, Y. Huang, and Y. Wang-zhu, BTLA interaction with HVEM expressed on CD8

, + T cells promotes survival and memory generation in response to a bacterial infection, Article ID e77992, vol.8, issue.10, 2013.

J. Liu, Z. Shriver, and R. M. Pope, Characterization of a heparan sulfate octasaccharide that binds to herpes simplex virus type 1 glycoprotein D, Journal of Biological Chemistry, vol.277, issue.36, pp.33456-33467, 2002.

E. Lazear, J. C. Whitbeck, and Y. Zuo, Induction of conformational changes at the N-terminus of herpes simplex virus 12 Mediators of Inflammation glycoprotein D upon binding to HVEM and nectin-1, Virology, vol.448, pp.185-195, 2014.

D. Fusco, C. Forghieri, and G. Campadelli-fiume, The profusion domain of herpes simplex virus glycoprotein D (gD) interacts with the gD N terminus and is displaced by soluble forms of viral receptors, Proceedings of the National Academy of Sciences of the United States of America, vol.102, issue.26, pp.9323-9328, 2005.

C. Krummenacher, V. M. Supekar, and J. C. Whitbeck, Structure of unliganded HSV gD reveals a mechanism for receptor-mediated activation of virus entry, EMBO Journal, vol.24, issue.23, pp.4144-4153, 2005.

A. V. Nicola, A. M. Mcevoy, and S. E. Straus, Roles for endocytosis and low pH in herpes simplex virus entry into HeLa and Chinese hamster ovary cells, Journal of Virology, vol.77, issue.9, pp.5324-5332, 2003.

R. S. Milne, A. V. Nicola, J. C. Whitbeck, R. J. Eisenberg, and G. H. Cohen, Glycoprotein D receptor-dependent, lowpH-independent endocytic entry of herpes simplex virus type 1, Journal of Virology, vol.79, issue.11, pp.6655-6663, 2005.

K. Döhner, A. Wolfstein, and U. Prank, Function of dynein and dynactin in herpes simplex virus capsid transport, Molecular Biology of the Cell, vol.13, issue.8, pp.2795-2809, 2002.

H. Granzow, B. G. Klupp, and T. C. Mettenleiter, Entry of pseudorabies virus: an immunogold-labeling study, Journal of Virology, vol.79, issue.5, pp.3200-3205, 2005.

A. M. Copeland, W. W. Newcomb, and J. C. Brown, Herpes simplex virus replication: roles of viral proteins and nucleoporins in capsid-nucleus attachment, Journal of Virology, vol.83, issue.4, pp.1660-1668, 2009.

L. E. Holland, K. P. Anderson, C. Shipman, and E. K. Wagner, Viral DNA synthesis is required for the efficient expression of specific herpes simplex virus type 1 mRNA species, Virology, vol.101, issue.1, pp.10-24, 1980.

A. D. Kops and D. M. Knipe, Formation of DNA replication structures in herpes virus-infected cells requires a viral DNA binding protein, Cell, vol.55, issue.5, pp.857-868, 1988.

L. Silva, H. S. Oh, L. Chang, Z. Yan, S. J. Triezenberg et al., Roles of the nuclear lamina in stable nuclear association and assembly of a herpesviral transactivator complex on viral immediate-early genes, mBio, vol.3, issue.1, 2012.

W. Wu, Z. Guo, and X. Zhang, A microRNA encoded by HSV-1 inhibits a cellular transcriptional repressor of viral immediate early and early genes, Science China Life Sciences, vol.56, issue.4, pp.373-383, 2013.

S. Chen, L. Mills, and P. Perry, Transactivation of the major capsid protein gene of herpes simplex virus type 1 requires a cellular transcription factor, Journal of Virology, vol.66, issue.7, pp.4304-4314, 1992.

J. Raj?áni, V. Andrea, and R. Ingeborg, Peculiarities of herpes simplex virus (HSV) transcription: an overview, Virus Genes, vol.28, issue.3, pp.293-310, 2004.

H. Hofemeister and P. O'hare, Nuclear pore composition and gating in herpes simplex virus-infected cells, Journal of Virology, vol.82, issue.17, pp.8392-8399, 2008.

A. Farnsworth, T. W. Wisner, and M. Webb, Herpes simplex virus glycoproteins gB and gH function in fusion between the virion envelope and the outer nuclear membrane, Proceedings of the National Academy of Sciences of the United States of America, vol.104, issue.24, pp.10187-10192, 2007.

S. Turcotte, J. Letellier, and R. Lippé, Herpes simplex virus type 1 capsids transit by the trans-Golgi network, where viral glycoproteins accumulate independently of capsid egress, Journal of Virology, vol.79, issue.14, pp.8847-8860, 2005.

H. L. Zenner, R. Mauricio, G. Banting, and C. M. Crump, Herpes simplex virus 1 counteracts tetherin restriction via its virion host shutoff activity, Journal of Virology, vol.87, issue.24, pp.13115-13123, 2013.

D. C. Johnson, M. Webb, T. W. Wisner, and C. Brunetti, Herpes simplex virus gE/gI sorts nascent virions to epithelial cell junctions, promoting virus spread, Journal of Virology, vol.75, issue.2, pp.821-833, 2001.

M. Aubert, M. Yoon, D. D. Sloan, P. G. Spear, and K. R. Jerome, The virological synapse facilitates herpes simplex virus entry into T cells, Journal of Virology, vol.83, issue.12, pp.6171-6183, 2009.

J. M. Lubinski, H. M. Lazear, S. Awasthi, F. Wang, and H. M. Friedman, The herpes simplex virus 1 IgG Fc receptor blocks antibody-mediated complement activation and antibody-dependent cellular cytotoxicity in vivo, Journal of Virology, vol.85, issue.7, pp.3239-3249, 2011.

L. M. Hook, J. M. Lubinski, M. Jiang, M. K. Pangburn, and H. M. Friedman, Herpes simplex virus type 1 and 2 glycoprotein C prevents complement-mediated neutralization induced by natural immunoglobulin M antibody, Journal of Virology, vol.80, issue.8, pp.4038-4046, 2006.

D. Tang, R. Kang, C. B. Coyne, H. J. Zeh, and M. T. Lotze, PAMPs and DAMPs: signal 0s that spur autophagy and immunity, Immunological Reviews, vol.249, issue.1, pp.158-175, 2012.

L. Alexopoulou, A. C. Holt, R. Medzhitov, and R. A. Flavell, Recognition of double-stranded RNA and activation of NF-B by Toll-like receptor 3, Nature, vol.413, issue.6857, pp.732-738, 2001.

S. S. Diebold, T. Kaisho, H. Hemmi, S. Akira, and C. R. Sousa, Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA, Science, vol.303, issue.5663, pp.1529-1531, 2004.

H. Hemmi, T. Kaisho, and O. Takeuchi, Small-antiviral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway, Nature Immunology, vol.3, issue.2, pp.196-200, 2002.

J. Melchjorsen, Sensing herpes: more than toll, Reviews in Medical Virology, vol.22, issue.2, pp.106-121, 2012.

N. Martinez-martin and A. Viejo-borbolla, Toll-like receptormediated recognition of herpes simplex virus, Frontiers in Bioscience, vol.2, issue.2, pp.718-729, 2010.

T. Gianni, V. Leoni, and G. Campadelli-fiume, Type I interferon and NF-B activation elicited by herpes simplex virus gH/gL via v 3 integrin in epithelial and neuronal cell lines, Journal of Virology, vol.87, issue.24, pp.13911-13916, 2013.

T. Gianni, V. Leoni, L. S. Chesnokova, L. M. Hutt-fletcher, and G. Campadelli-fiume, alphavbeta3-integrin is a major sensor and activator of innate immunity to herpes simplex virus-1, Proceedings of the National Academy of Sciences of the United States of America, vol.109, issue.48, pp.19792-19797, 2012.

M. E. Ariza, R. Glaser, and M. V. Williams, Human herpesviruses-encoded dUTPases: a family of proteins that modulate dendritic cell function and innate immunity, Frontiers in Microbiology, vol.5, p.504, 2014.

A. Sato, M. M. Linehan, and A. Iwasaki, Dual recognition of herpes simplex viruses by TLR2 and TLR9 in dendritic cells, Proceedings of the National Academy of Sciences of the United States of America, vol.103, pp.17343-17348, 2006.

S. Takeda, D. Miyazaki, and S. Sasaki, Roles played by Tolllike receptor-9 in corneal endothelial cells after herpes simplex virus type 1 infection, Investigative Ophthalmology and Visual Science, vol.52, issue.9, pp.6729-6736, 2011.

E. A. Kurt-jones, M. Chan, and S. Zhou, Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis, Proceedings of the National Academy of Sciences of the United States of America, vol.101, issue.5, pp.1315-1320, 2004.

S. J. Schachtele, S. Hu, M. R. Little, and J. R. Lokensgard, Herpes simplex virus induces neural oxidative damage via microglial cell Toll-like receptor-2, Journal of Neuroinflammation, vol.7, p.35, 2010.

L. S. Reinert, L. Harder, and C. K. Holm, TLR3 deficiency renders astrocytes permissive to herpes simplex virus infection and facilitates establishment of CNS infection in mice, Journal of Clinical Investigation, vol.122, issue.4, pp.1368-1376, 2012.

Z. Liu, Y. Guan, and X. Sun, HSV-1 activates NF-kappaB in mouse astrocytes and increases TNF-alpha and IL-6 expression via Toll-like receptor 3, Neurological Research, vol.35, issue.7, pp.755-762, 2013.

A. Casrouge, S. Zhang, and C. Eidenschenk, Herpes simplex virus encephalitis in human UNC-93B deficiency, Science, vol.314, issue.5797, pp.308-312, 2006.

S. Zhang, E. Jouanguy, and S. Ugolini, TLR3 deficiency in patients with herpes simplex encephalitis, Science, vol.317, issue.5844, pp.1522-1527, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00297308

Y. Guo, M. Audry, and M. Ciancanelli, Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity, Journal of Experimental Medicine, vol.208, issue.10, pp.2083-2098, 2011.

F. G. Lafaille, I. M. Pessach, and S. Zhang, Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells, Nature, vol.491, issue.7426, pp.769-773, 2012.

A. A. Ashkar, X. Yao, N. Gill, D. Sajic, A. J. Patrick et al., Toll-like receptor (TLR)-3, but not TLR4, agonist protects against genital herpes infection in the absence of inflammation seen with CpG DNA, The Journal of Infectious Diseases, vol.190, issue.10, pp.1841-1849, 2004.

R. L. Miller, L. M. Imbertson, M. J. Reiter, and J. F. Gerster, Treatment of primary herpes simplex virus infection in guinea pigs by imiquimod, Antiviral Research, vol.44, issue.1, pp.31-42, 1999.

D. Hirokawa, A. Woldow, S. N. Lee, and F. Samie, Treatment of recalcitrant herpes simplex virus with topical imiquimod, Cutis, vol.88, issue.6, pp.276-277, 2011.

Y. Kan, T. Okabayashi, S. Yokota, S. Yamamoto, N. Fujii et al., Imiquimod suppresses propagation of herpes simplex virus 1 by upregulation of cystatin a via the adenosine receptor A1 pathway, Journal of Virology, vol.86, issue.19, pp.10338-10346, 2012.

A. Lascaux, E. Caumes, and C. Deback, Successful treatment of aciclovir and foscarnet resistant Herpes simplex virus lesions with topical imiquimod in patients infected with human immunodeficiency virus type 1, Journal of Medical Virology, vol.84, issue.2, pp.194-197, 2012.

N. Boivin, R. Menasria, J. Piret, and G. Boivin, Modulation of TLR9 response in a mouse model of herpes simplex virus encephalitis, Antiviral Research, vol.96, issue.3, pp.414-421, 2012.

H. Shen and A. Iwasaki, A crucial role for plasmacytoid dendritic cells in antiviral protection by CpG ODN-based vaginal microbicide, The Journal of Clinical Investigation, vol.116, issue.8, pp.2237-2243, 2006.

A. M. Harandi, K. Eriksson, and J. Holmgren, A protective role of locally administered immunostimulatory CpG oligodeoxynucleotide in a mouse model of genital herpes infection, Journal of Virology, vol.77, issue.2, pp.953-962, 2003.

R. B. Pyles, D. Higgins, and C. Chalk, Use of immunostimulatory sequence-containing oligonucleotides as topical therapy for genital herpes simplex virus type 2 infection, Journal of Virology, vol.76, issue.22, pp.11387-11396, 2002.

M. M. Sauter, J. J. Gauger, and C. R. Brandt, Oligonucleotides designed to inhibit TLR9 block herpes simplex virus type 1 infection at multiple steps, Antiviral Research, vol.109, pp.83-96, 2014.

R. B. Pyles, D. Higgins, and C. Chalk, Use of immunostimulatory sequence-containing oligonucleotides as topical therapy for genital herpes simplex virus type 2 infection, Journal of Virology, vol.76, issue.22, pp.11387-11396, 2002.

N. Boivin, R. Menasria, J. Piret, S. Rivest, and G. Boivin, The combination of valacyclovir with an anti-TNF alpha antibody increases survival rate compared to antiviral therapy alone in a murine model of herpes simplex virus encephalitis, Antiviral Research, vol.100, issue.3, pp.649-653, 2013.

K. Triantafilou, D. Eryilmazlar, and M. Triantafilou, Herpes simplex virus 2-induced activation in vaginal cells involves Tolllike receptors 2 and 9 and DNA sensors DAI and IFI16, The American Journal of Obstetrics and Gynecology, vol.210, issue.2, 2014.

T. Gianni and G. Campadelli-fiume, v 3-integrin relocalizes nectin1 and routes herpes simplex virus to lipid rafts, Journal of Virology, vol.86, issue.5, pp.2850-2855, 2012.

C. D. Conrady, M. Zheng, K. A. Fitzgerald, C. Liu, and D. J. Carr, Resistance to HSV-1 infection in the epithelium resides with the novel innate sensor, IFI-16, Mucosal Immunology, vol.5, issue.2, pp.173-183, 2012.

L. Unterholzner, S. E. Keating, and M. Baran, IFI16 is an innate immune sensor for intracellular DNA, Nature Immunology, vol.11, issue.11, pp.997-1004, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00582635

K. E. Johnson, V. Bottero, and S. Flaherty, IFI16 restricts HSV-1 replication by accumulating on the HSV-1 genome, repressing HSV-1 gene expression, and directly or indirectly modulating histone modifications, Article ID e1004503, vol.10, 2014.

X. Li, J. Wu, D. Gao, H. Wang, L. Sun et al., Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects, Science, vol.341, issue.6152, pp.1390-1394, 2013.

X. Yao and K. L. Rosenthal, Herpes simplex virus type 2 virion host shutoff protein suppresses innate dsRNA antiviral pathways in human vaginal epithelial cells, Journal of General Virology, vol.92, issue.9, 1981.

K. E. Johnson, L. Chikoti, and B. Chandran, Herpes simplex virus 1 infection induces activation and subsequent inhibition of the IFI16 and NLRP3 inflammasomes, Journal of Virology, vol.87, issue.9, pp.5005-5018, 2013.

G. Zhou, V. Galvan, G. Campadelli-fiume, and B. Roizman, Glycoprotein D or J delivered in trans blocks apoptosis in SK-N-SH cells induced by a herpes simplex virus 1 mutant lacking intact genes expressing both glycoproteins, Journal of Virology, vol.74, issue.24, pp.11782-11791, 2000.

Y. Yamauchi, T. Daikoku, F. Goshima, and Y. Nishiyama, Herpes simplex virus UL14 protein blocks apoptosis, Microbiology and Immunology, vol.47, issue.9, pp.685-689, 2003.

E. K. Golembewski, S. Q. Wales, L. Aurelian, and P. J. Yarowsky, The HSV-2 protein ICP10PK prevents neuronal apoptosis and loss of function in an in vivo model of neurodegeneration associated with glutamate excitotoxicity, Experimental Neurology, vol.203, issue.2, pp.381-393, 2007.

D. Perkins, E. F. Pereira, M. Gober, P. J. Yarowsky, and L. Aurelian, The herpes simplex virus type 2 r1 protein kinase (ICP10 PK) blocks apoptosis in hippocampal neurons, involving activation of the MEK/MAPK survival pathway, Journal of Virology, vol.76, issue.3, pp.1435-1449, 2002.

X. Wang, C. Patenode, and B. Roizman, U 3 protein kinase of HSV-1 cycles between the cytoplasm and nucleus and interacts with programmed cell death protein 4 (PDCD4) to block apoptosis, Proceedings of the National Academy of Sciences of the United States of America, vol.108, issue.35, pp.14632-14636, 2011.

X. Wang, Y. Li, and S. Liu, Direct activation of RIP3/MLKLdependent necrosis by herpes simplex virus 1 (HSV-1) protein ICP6 triggers host antiviral defense, Proceedings of the National Academy of Sciences of the United States of America, vol.111, issue.43, pp.15438-15443, 2014.

A. Iannello, O. Debbeche, and R. E. Arabi, Herpes simplex virus type 1-induced FasL expression in human monocytic cells and its implications for cell death, viral replication, and immune evasion, Viral Immunology, vol.24, issue.1, pp.11-26, 2011.

L. Bosnjak, M. Miranda-saksena, D. M. Koelle, R. A. Boadle, C. A. Jones et al., Herpes simplex virus infection of human dendritic cells induces apoptosis and allows cross-presentation via uninfected dendritic cells, Journal of Immunology, vol.174, issue.4, pp.2220-2227, 2005.

M. Stefanidou, I. Ramos, and V. M. Casullo, Herpes simplex virus 2 (HSV-2) prevents dendritic cell maturation, induces apoptosis, and triggers release of proinflammatory cytokines: Potential links to HSV-HIV synergy, Journal of Virology, vol.87, issue.3, pp.1443-1453, 2013.

P. A. Gobeil and D. A. Leib, Herpes simplex virus gamma34.5 interferes with autophagosome maturation and antigen presentation in dendritic cells, MBio, vol.3, issue.5, pp.267-00212, 2012.

B. Yordy, N. Iijima, A. Huttner, D. Leib, and A. Iwasaki, A neuron-specific role for autophagy in antiviral defense against herpes simplex virus, Cell Host and Microbe, vol.12, issue.3, pp.334-345, 2012.

D. J. Carr, L. Tomanek, R. H. Silverman, I. L. Campbell, and B. R. Williams, RNA-dependent protein kinase is required for alpha-1 interferon transgene-induced resistance to genital herpes simplex virus type 2, Journal of Virology, vol.79, issue.14, pp.9341-9345, 2005.

D. A. Leib, M. A. Machalek, B. R. Williams, R. H. Silverman, and H. W. Virgin, Specific phenotypic restoration of an attenuated virus by knockout of a host resistance gene, Proceedings of the National Academy of Sciences of the United States of America, vol.97, issue.11, pp.6097-6101, 2000.

B. He, M. Gross, and B. Roizman, The 134.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1 to dephosphorylate the subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase, Proceedings of the National Academy of Sciences of the United States of America, vol.94, issue.3, pp.843-848, 1997.

J. Poppers, M. Mulvey, D. Khoo, and I. Mohr, Inhibition of PKR activation by the proline-rich RNA binding domain of the herpes simplex virus type 1 Us11 protein, Journal of Virology, vol.74, issue.23, pp.11215-11221, 2000.

M. Shu, B. Taddeo, W. Zhang, and B. Roizman, Selective degradation of mRNAs by the HSV host shutoff RNase is regulated by the UL47 tegument protein, Proceedings of the National Academy of Sciences of the United States of America, vol.110, pp.1669-1675, 2013.

B. Taddeo, W. Zhang, and B. Roizman, The Herpes Simplex Virus host shutoff RNase degrades cellular and viral mRNAs made before infection but not viral mRNA made after infection, Journal of Virology, vol.87, issue.8, pp.4516-4522, 2013.

D. K. Kaushik, M. Gupta, and A. Basu, Microglial response to viral challenges: every silver lining comes with a cloud, Frontiers in Bioscience, vol.16, issue.6, pp.2187-2205, 2011.

G. N. Milligan and D. I. Bernstein, Interferon-enhances resolution of herpes simplex virus type 2 infection of the murine genital tract, Virology, vol.229, issue.1, pp.259-268, 1997.

T. Peng, J. Zhu, and A. Klock, Evasion of the mucosal innate immune system by herpes simplex virus type 2, Journal of Virology, vol.83, issue.23, pp.12559-12568, 2009.

G. D. Luker, J. L. Prior, J. Song, C. M. Pica, and D. A. Leib, Bioluminescence imaging reveals systemic dissemination of herpes simplex virus type 1 in the absence of interferon receptors, Journal of Virology, vol.77, issue.20, pp.11082-11093, 2003.

K. E. Johnson, B. Song, and D. M. Knipe, Role for herpes simplex virus 1 ICP27 in the inhibition of type I interferon signaling, Virology, vol.374, issue.2, pp.487-494, 2008.

S. Wang, K. Wang, R. Lin, and C. Zheng, Herpes simplex virus 1 serine/threonine kinase US3 hyperphosphorylates IRF3 and inhibits beta interferon production, Journal of Virology, vol.87, issue.23, pp.12814-12827, 2013.

J. Xing, L. Ni, S. Wang, K. Wang, R. Lin et al., Herpes simplex virus 1-encoded tegument protein VP16 abrogates the production of beta interferon (IFN) by inhibiting NF-kappaB activation and blocking IFN regulatory factor 3 to recruit its coactivator CBP, Journal of Virology, vol.87, issue.17, pp.9788-9801, 2013.

S. Wang, K. Wang, J. Li, and C. Zhenga, Herpes simplex virus 1 ubiquitin-specific protease UL36 inhibits beta interferon production by deubiquitinating TRAF3, Journal of Virology, vol.87, issue.21, pp.11851-11860, 2013.

J. Shupack, M. Stiller, I. Davis, C. Kenny, and L. Jondreau, Topical alpha-interferon ointment with dimethyl sulfoxide in the treatment of recurrent genital herpes simplex, Dermatology, vol.184, issue.1, pp.40-44, 1992.

K. Y. Fung, N. E. Mangan, and H. Cumming, Interferonprotects the female reproductive tract from viral and bacterial infection, Science, vol.339, issue.6123, pp.1088-1092, 2013.

P. Hermant, C. Francius, F. Clotman, and T. Michiels, IFNepsilon is constitutively expressed by cells of the reproductive tract and is inefficiently secreted by fibroblasts and cell lines, PLoS ONE, vol.8, issue.8, 2013.

N. E. Mangan, N. Bourke, C. Gargett, and P. J. Hertzog, 125: a role for interferon epsilon in the innate immune response in the female reproductive tract, Cytokine, vol.70, issue.1, p.58, 2014.

H. Li, J. Zhang, A. Kumar, M. Zheng, S. S. Atherton et al., Herpes simplex virus 1 infection induces the expression of proinflammatory cytokines, interferons and TLR7 in human corneal epithelial cells, Immunology, vol.117, issue.2, pp.167-176, 2006.

T. H. Mogensen and S. R. Paludan, Molecular pathways in virus-induced cytokine production, Microbiology and Molecular Biology Reviews, vol.65, issue.1, pp.131-150, 2001.

J. Zhang, S. Wang, K. Wang, and C. Zheng, Herpes simplex virus 1 DNA polymerase processivity factor UL42 inhibits TNF--induced NF-B activation by interacting with p65/RelA and p50/NF-B1, Medical Microbiology and Immunology, vol.202, issue.4, pp.313-325, 2013.

J. Zhang, K. Wang, S. Wang, and C. Zheng, Herpes simplex virus 1 E3 ubiquitin ligase ICP0 protein inhibits tumor necrosis factor alpha-induced NF-kappaB activation by interacting with p65/RelA and p50/NF-kappaB1, Journal of Virology, vol.87, issue.23, pp.12935-12948, 2013.

K. Wang, L. Ni, S. Wang, and C. Zheng, Herpes simplex virus 1 protein kinase US3 hyperphosphorylates p65/RelA and dampens NF-kappaB activation, Journal of Virology, vol.88, issue.14, pp.7941-7951, 2014.

X. Liu, K. Fitzgerald, E. Kurt-jones, R. Finberg, and D. M. Knipe, Herpesvirus tegument protein activates NF-B signaling through the TRAF6 adaptor protein, Proceedings of the National Academy of Sciences of the United States of America, vol.105, issue.32, pp.11335-11339, 2008.

A. Patel, J. Hanson, and T. I. Mclean, Herpes simplex virus type 1 induction of persistent NF-B nuclear translocation increases the efficiency of virus replication, Virology, vol.247, issue.2, pp.212-222, 1998.

D. Gregory, D. Hargett, D. Holmes, E. Money, and S. L. Bachenheimer, Efficient replication by herpes simplex virus type 1 involves activation of the I B kinase-I B-p65 pathway, Journal of Virology, vol.78, issue.24, pp.13582-13590, 2004.

V. H. Ferreira, A. Nazli, K. L. Mossman, and C. Kaushic, Proinflammatory cytokines and chemokines-but not interferonbeta-produced in response to HSV-2 in primary human genital epithelial cells are associated with viral replication and the presence of the virion host shutoff protein, The American Journal of Reproductive Immunology, vol.70, issue.3, pp.199-212, 2013.

W. Huang, K. Hu, and S. Luo, Herpes simplex virus type 2 infection of human epithelial cells induces CXCL9 expression and CD4

, + T cell migration via activation of p38-CCAAT/enhancer-binding protein-pathway, The Journal of Immunology, vol.188, issue.12, pp.6247-6257, 2012.

M. Thapa, R. S. Welner, R. Pelayo, and D. J. Carr, CXCL9 and CXCL10 expression are critical for control of genital herpes simplex virus type 2 infection through mobilization of HSVspecific CTL and NK cells to the nervous system, Journal of Immunology, vol.180, issue.2, pp.1098-1106, 2008.

H. Shin and A. Iwasaki, A vaccine strategy that protects against genital herpes by establishing local memory T cells, Nature, vol.491, issue.7424, pp.463-467, 2012.

C. D. Conrady, M. Zheng, N. A. Mandal, N. Van-rooijen, and D. J. Carr, IFN-alpha-driven CCL2 production recruits inflammatory monocytes to infection site in mice, Mucosal Immunology, vol.6, issue.1, pp.45-55, 2013.

C. D. Conrady, M. Zheng, and N. Van-rooijen, Microglia and a functional type i IFN pathway are required to counter HSV-1-driven brain lateral ventricle enlargement and encephalitis, The Journal of Immunology, vol.190, issue.6, pp.2807-2817, 2013.

A. J. Chucair-elliott, C. Conrady, M. Zheng, C. M. Kroll, T. E. Lane et al., Microglia-induced IL-6 protects against neuronal loss following HSV-1 infection of neural progenitor cells, Glia, vol.62, issue.9, pp.1418-1434, 2014.

R. Aoki, T. Kawamura, and F. Goshima, Mast cells play a key role in host defense against herpes simplex virus infection through TNF-and IL-6 production, Journal of Investigative Dermatology, vol.133, issue.9, pp.2170-2179, 2013.

L. Corey, A. Wald, C. L. Celum, and T. C. Quinn, The effects of herpes simplex virus-2 on HIV-1 acquisition and transmission: a review of two overlapping epidemics, Journal of Acquired Immune Deficiency Syndromes, vol.35, issue.5, pp.435-445, 2004.

K. E. Johnson, A. D. Redd, and T. C. Quinn, Effects of HIV-1 and herpes simplex virus type 2 infection on lymphocyte and dendritic cell density in adult foreskins from Rakai, Uganda, Journal of Infectious Diseases, vol.203, issue.5, pp.602-609, 2011.

A. Rebbapragada, C. Wachihi, and C. Pettengell, Negative mucosal synergy between Herpes simplex type 2 and HIV in the female genital tract, AIDS, vol.21, issue.5, pp.589-598, 2007.

E. Sartori, A. Calistri, C. Salata, C. Vecchio, G. Pal et al., Herpes simplex virus type 2 infection increases human immunodeficiency virus type 1 entry into human primary macrophages, Virology Journal, vol.8, p.166, 2011.

E. Martinelli, H. Tharinger, and I. Frank, HSV-2 infection of dendritic cells amplifies a highly susceptible HIV-1 cell target, PLoS Pathogens, vol.7, issue.6, 2011.

M. A. Jong, L. De-witte, M. E. Taylor, and T. B. Geijtenbeek, Herpes simplex virus type 2 enhances HIV-1 susceptibility by affecting langerhans cell function, The Journal of Immunology, vol.185, issue.3, pp.1633-1641, 2010.

E. Fakioglu, S. S. Wilson, and P. M. Mesquita, Herpes simplex virus downregulates secretory leukocyte protease inhibitor: a novel immune evasion mechanism, Journal of Virology, vol.82, issue.19, pp.9337-9344, 2008.

A. T. Stock, J. M. Smith, and F. R. Carbone, Type I IFN suppresses Cxcr2 driven neutrophil recruitment into the sensory ganglia during viral infection, Journal of Experimental Medicine, vol.211, issue.5, pp.751-759, 2014.

J. M. Lubinski, M. Jiang, and L. Hook, Herpes simplex virus type 1 evades the effects of antibody and complement in vivo, Journal of Virology, vol.76, issue.18, pp.9232-9241, 2002.

W. P. Halford, J. L. Maender, and B. M. Gebhardt, Re-evaluating the role of natural killer cells in innate resistance to herpes simplex virus type 1, Virology Journal, vol.2, 2005.

S. Nandakumar, S. N. Woolard, D. Yuan, B. T. Rouse, and U. Kumaraguru, Natural killer cells as novel helpers in anti-herpes simplex virus immune response, Journal of Virology, vol.82, issue.21, pp.10820-10831, 2008.

M. Kim, N. R. Osborne, and W. Zeng, Herpes simplex virus antigens directly activate NK cells via TLR2, thus facilitating their presentation to CD4 T lymphocytes, The Journal of Immunology, vol.188, issue.9, pp.4158-4170, 2012.

D. Schepis, M. Amato, M. Studahl, T. Bergström, K. Kärre et al., Herpes simplex virus infection downmodulates NKG2D ligand expression, Scandinavian Journal of Immunology, vol.69, issue.5, pp.429-436, 2009.

R. Tomazin, A. B. Hill, and P. Jugovic, Stable binding of the herpes simplex virus ICP47 protein to the peptide binding site of TAP, The EMBO Journal, vol.15, issue.13, pp.3256-3266, 1996.

D. I. Godfrey, D. G. Pellicci, O. Patel, L. Kjer-nielsen, J. Mccluskey et al., Antigen recognition by CD1d-restricted NKT T cell receptors, Seminars in Immunology, vol.22, issue.2, pp.61-67, 2010.

L. Novakova, Z. Nevoralova, and J. Novak, Innate-like behavior of human invariant natural killer T cells during herpes simplex virus infection, Cellular Immunology, vol.278, issue.1-2, pp.16-20, 2012.

P. Rao, H. T. Pham, and A. Kulkarni, Herpes simplex virus 1 Glycoprotein B and US3 collaborate to inhibit CD1d antigen presentation and NKT Cell function, Journal of Virology, vol.85, issue.16, pp.8093-8104, 2011.

W. Yuan, A. Dasgupta, and P. Cresswell, Herpes simplex virus evades natural killer T cell recognition by suppressing CD1d recycling, Nature Immunology, vol.7, issue.8, pp.835-842, 2006.