M. J. Stone, J. A. Hayward, C. Huang, Z. Eh, and J. Sanchez, Mechanisms of Regulation of the ChemokineReceptor Network. International journal of molecular sciences, vol.18, p.5343877, 2017.

J. Wang and H. Knaut, Chemokine signaling in development and disease, Development, vol.141, issue.22, p.4302920, 2014.

H. Nomiyama, N. Osada, and Y. O. , A family tree of vertebrate chemokine receptors for a unified nomenclature, Developmental and comparative immunology, vol.35, issue.7, p.21295066, 2011.

B. Bajoghli, Evolution and function of chemokine receptors in the immune system of lower vertebrates, European journal of immunology, vol.43, issue.7, p.23719857, 2013.

A. Vacchini, M. Locati, and E. M. Borroni, Overview and potential unifying themes of the atypical chemokine receptor family, Journal of leukocyte biology, vol.99, issue.6, p.26740381, 2016.

J. S. Burg, J. R. Ingram, A. J. Venkatakrishnan, K. M. Jude, A. Dukkipati et al., Structural biology. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor, Science, vol.347, issue.6226, p.4445376, 2015.

C. Oswald, M. Rappas, J. Kean, A. S. Dore, J. C. Errey et al., Intracellular allosteric antagonism of the CCR9 receptor, Nature, vol.540, issue.7633, pp.462-467, 2016.

S. H. Park, B. B. Das, F. Casagrande, Y. Tian, H. J. Nothnagel et al., Structure of the chemokine receptor CXCR1 in phospholipid bilayers, Nature, vol.491, issue.7426, p.3700570, 2012.

L. Qin, I. Kufareva, L. G. Holden, C. Wang, Y. Zheng et al., Structural biology. Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine, Science, vol.347, issue.6226, p.4362693, 2015.

Q. Tan, Y. Zhu, J. Li, Z. Chen, G. W. Han et al., Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex, Science, vol.341, issue.6152, p.3819204, 2013.

B. Wu, E. Y. Chien, C. D. Mol, G. Fenalti, W. Liu et al., Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists, Science, vol.330, issue.6007, p.3074590, 2010.

T. J. Schall and A. E. Proudfoot, Overcoming hurdles in developing successful drugs targeting chemokine receptors, Nature reviews Immunology, vol.11, issue.5, pp.355-63, 2011.

S. Rajagopal, D. L. Bassoni, J. J. Campbell, N. P. Gerard, C. Gerard et al., Biased agonism as a mechanism for differential signaling by chemokine receptors, The Journal of biological chemistry, vol.288, issue.49, p.3853256, 2013.

J. Deville, J. Rey, and M. Chabbert, An indel in transmembrane helix 2 helps to trace the molecular evolution of class A G-protein-coupled receptors, Journal of molecular evolution, vol.68, issue.5, p.19357801, 2009.

R. Fredriksson, M. C. Lagerstrom, L. G. Lundin, and H. B. Schioth, The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints, Molecular pharmacology, vol.63, issue.6, p.12761335, 2003.

J. Pele, H. Abdi, M. Moreau, D. Thybert, and M. Chabbert, Multidimensional scaling reveals the main evolutionary pathways of class A G-protein-coupled receptors, PloS one, vol.6, issue.4, p.3081337, 2011.

J. Pele, M. Moreau, H. Abdi, P. Rodien, H. Castel et al., Comparative analysis of sequence covariation methods to mine evolutionary hubs: examples from selected GPCR families, Proteins, vol.82, issue.9, p.24677372, 2014.

V. Katritch, G. Fenalti, E. E. Abola, B. L. Roth, V. Cherezov et al., Allosteric sodium in class A GPCR signaling, Trends in biochemical sciences, vol.39, issue.5, p.4106411, 2014.

B. Selvam, Z. Shamsi, and D. Shukla, Universality of the Sodium Ion Binding Mechanism in Class A G-Protein-Coupled Receptors, Angewandte Chemie, vol.57, issue.12, p.29405531, 2018.

H. Abdi and L. J. Williams, Principal component analysis. Wiley Interdisciplinary Reviews. 22010, pp.433-59
URL : https://hal.archives-ouvertes.fr/hal-01259094

G. Fenalti, P. M. Giguere, V. Katritch, X. P. Huang, A. A. Thompson et al., Molecular control of delta-opioid receptor signalling, Nature, vol.506, issue.7487, p.3931418, 2014.

C. Zhang, Y. Srinivasan, D. H. Arlow, J. J. Fung, D. Palmer et al., High-resolution crystal structure of human protease-activated receptor 1, Nature, vol.492, issue.7429, p.3531875, 2012.

W. B. Zhang, J. M. Navenot, B. Haribabu, H. Tamamura, K. Hiramatu et al., A point mutation that confers constitutive activity to CXCR4 reveals that T140 is an inverse agonist and that AMD3100 and ALX40-4C are weak partial agonists, The Journal of biological chemistry, vol.277, issue.27, p.11923301, 2002.

D. Verzijl, S. Storelli, D. J. Scholten, L. Bosch, T. A. Reinhart et al., Noncompetitive antagonism and inverse agonism as mechanism of action of nonpeptidergic antagonists at primate and rodent CXCR3 chemokine receptors. The Journal of pharmacology and experimental therapeutics, vol.325, p.3659174, 2008.

K. Noda, Y. H. Feng, X. P. Liu, Y. Saad, A. Husain et al., The active state of the AT1 angiotensin receptor is generated by angiotensin II induction, Biochemistry, vol.35, issue.51, pp.16435-16477, 1996.

H. Zheng, M. Chruszcz, P. Lasota, L. Lebioda, and W. Minor, Data mining of metal ion environments present in protein structures, Journal of inorganic biochemistry, vol.102, issue.9, p.2872550, 2008.

P. R. Markwick and J. A. Mccammon, Studying functional dynamics in bio-molecules using accelerated molecular dynamics, Physical chemistry chemical physics: PCCP, vol.13, issue.45, pp.20053-65, 2011.

W. Liu, E. Chun, A. A. Thompson, P. Chubukov, F. Xu et al., Structural basis for allosteric regulation of GPCRs by sodium ions, Science, vol.337, issue.6091, p.3399762, 2012.

J. L. Miller-gallacher, R. Nehme, T. Warne, P. C. Edwards, G. F. Schertler et al., The 2.1 A resolution structure of cyanopindolol-bound beta1-adrenoceptor identifies an intramembrane Na+ ion that stabilises the ligand-free receptor, PloS one, vol.9, issue.3, p.3963952, 2014.

S. Yuan, H. Vogel, and S. Filipek, The role of water and sodium ions in the activation of the mu-opioid receptor, Angewandte Chemie, vol.52, issue.38, p.23904331, 2013.

O. N. Vickery, C. A. Carvalheda, S. A. Zaidi, A. V. Pisliakov, V. Katritch et al., Intracellular Transfer of Na(+) in an Active-State G-Protein-Coupled Receptor, Structure, vol.26, issue.1, p.5805466, 2018.

O. N. Vickery, J. P. Machtens, G. Tamburrino, D. Seeliger, and U. Zachariae, Structural Mechanisms of Voltage Sensing in G Protein-Coupled Receptors, Structure, vol.24, issue.6, p.4906246, 2016.

L. Valentin-hansen, T. M. Frimurer, J. Mokrosinski, N. D. Holliday, and T. W. Schwartz, Biased Gs versus Gq proteins and beta-arrestin signaling in the NK1 receptor determined by interactions in the water hydrogen bond network, The Journal of biological chemistry, vol.290, issue.40, p.4591830, 2015.

C. Kapota and G. Ohanessian, The low energy tautomers and conformers of the dipeptides HisGly and GlyHis and of their sodium ion complexes in the gas phase, Physical chemistry chemical physics: PCCP, vol.7, issue.21, pp.3744-55, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00904636

G. Kuppuraj, M. Dudev, and C. Lim, Factors governing metal-ligand distances and coordination geometries of metal complexes. The journal of physical chemistry B, vol.113, pp.2952-60, 2009.

H. Nomiyama and Y. O. , Functional roles of evolutionary conserved motifs and residues in vertebrate chemokine receptors, Journal of leukocyte biology, vol.97, issue.1, pp.39-47, 2015.

D. J. Dairaghi, E. R. Oldham, K. B. Bacon, and T. J. Schall, Chemokine receptor CCR3 function is highly dependent on local pH and ionic strength, The Journal of biological chemistry, vol.272, issue.45, p.9353270, 1997.

M. J. Page, D. Cera, and E. , Role of Na+ and K+ in enzyme function, Physiological reviews, vol.86, issue.4, p.17015484, 2006.

H. Gutierrez-de-teran, A. Massink, D. Rodriguez, W. Liu, G. W. Han et al., The role of a sodium ion binding site in the allosteric modulation of the A(2A) adenosine G protein-coupled receptor. Structure, vol.21, p.24210756, 2013.

P. Central and P. , , p.3858454

Y. Shang, V. Lerouzic, S. Schneider, P. Bisignano, G. W. Pasternak et al., Mechanistic insights into the allosteric modulation of opioid receptors by sodium ions, Biochemistry, vol.53, issue.31, p.4131901, 2014.

J. Selent, F. Sanz, M. Pastor, D. Fabritiis, and G. , Induced effects of sodium ions on dopaminergic G-protein coupled receptors, PLoS computational biology, vol.6, issue.8, p.2920834, 2010.

R. Nygaard, T. M. Frimurer, B. Holst, M. M. Rosenkilde, and T. W. Schwartz, Ligand binding and micro-switches in 7TM receptor structures, Trends in pharmacological sciences, vol.30, issue.5, p.19375807, 2009.

P. Colin, Y. Benureau, I. Staropoli, Y. Wang, N. Gonzalez et al., HIV-1 exploits CCR5 conformational heterogeneity to escape inhibition by chemokines, Proceedings of the National Academy of Sciences of the United States of America, vol.110, issue.23, p.3677469, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00825629

M. P. Crump, J. H. Gong, P. Loetscher, K. Rajarathnam, A. A. Arenzana-seisdedos et al., Solution structure and basis for functional activity of stromal cell-derived factor-1; dissociation of CXCR4 activation from binding and inhibition of HIV-1. The EMBO journal, vol.16, p.1170303, 1997.

B. Haworth, H. Lin, M. Fidock, P. Dorr, and P. G. Strange, Allosteric effects of antagonists on signalling by the chemokine receptor CCR5, Biochemical pharmacology, vol.74, issue.6, p.17669370, 2007.

B. Lagane, S. Ballet, T. Planchenault, K. Balabanian, L. Poul et al., Mutation of the DRY motif reveals different structural requirements for the CC chemokine receptor 5-mediated signaling and receptor endocytosis, Molecular pharmacology, vol.67, issue.6, p.15761117, 2005.

M. Liebick, S. Henze, V. Vogt, and M. Oppermann, Functional consequences of chemically-induced betaarrestin binding to chemokine receptors CXCR4 and CCR5 in the absence of ligand stimulation, Cellular signalling, vol.38, p.28733085, 2017.

M. Liebick, C. Schlager, and M. Oppermann, Analysis of Chemokine Receptor Trafficking by Site-Specific Biotinylation, PloS one, vol.11, issue.6, p.4911081, 2016.

M. Li and R. M. Ransohoff, The roles of chemokine CXCL12 in embryonic and brain tumor angiogenesis. Seminars in cancer biology, vol.19, pp.111-116, 2009.

M. Li and R. M. Ransohoff, Multiple roles of chemokine CXCL12 in the central nervous system: a migration from immunology to neurobiology, Progress in neurobiology, vol.84, issue.2, p.2324067, 2007.

T. Maritzen, H. Schachtner, and D. F. Legler, On the move: endocytic trafficking in cell migration, Cellular and molecular life sciences: CMLS, vol.72, issue.11, p.25681867, 2015.

H. Castel, L. Desrues, J. E. Joubert, M. C. Tonon, L. Prezeau et al., The G Protein-Coupled Receptor UT of the Neuropeptide Urotensin II Displays Structural and Functional Chemokine Features, Frontiers in endocrinology, vol.8, p.28487672, 2017.

P. Central and P. , , p.5403833

H. Vaudry, J. Leprince, D. Chatenet, A. Fournier, D. G. Lambert et al., International Union of Basic and Clinical Pharmacology. XCII. Urotensin II, urotensin II-related peptide, and their receptor: from structure to function, Pharmacological reviews, vol.67, issue.1, p.25535277, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01352677

H. Zhang, H. Unal, R. Desnoyer, G. W. Han, N. Patel et al., Structural Basis for Ligand Recognition and Functional Selectivity at Angiotensin Receptor. The Journal of biological chemistry, vol.290, p.4705918, 2015.

A. Guyon, CXCL12 chemokine and its receptors as major players in the interactions between immune and nervous systems, Frontiers in cellular neuroscience, vol.8, p.3944789, 2014.

K. M. Ansel, V. N. Ngo, P. L. Hyman, S. A. Luther, R. Forster et al., A chemokine-driven positive feedback loop organizes lymphoid follicles, Nature, vol.406, issue.6793, p.10917533, 2000.

K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei et al., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution, vol.28, p.3203626, 2011.

G. E. Crooks, G. Hon, J. M. Chandonia, and S. E. Brenner, WebLogo: a sequence logo generator, Genome research, vol.14, issue.6, p.419797, 2004.

S. C. Sealfon, L. Chi, B. J. Ebersole, V. Rodic, D. Zhang et al., Related contribution of specific helix 2 and 7 residues to conformational activation of the serotonin 5-HT2A receptor. The Journal of biological chemistry, vol.270, p.7622478, 1995.

A. A. Fodor and R. W. Aldrich, Influence of conservation on calculations of amino acid covariance in multiple sequence alignments, Proteins, vol.56, issue.2, p.15211506, 2004.

A. Sali and T. L. Blundell, Comparative protein modelling by satisfaction of spatial restraints, vol.234, p.8254673, 1993.

Y. Miao, A. D. Caliman, and J. A. Mccammon, Allosteric effects of sodium ion binding on activation of the m3 muscarinic g-protein-coupled receptor, Biophysical journal, vol.108, issue.7, p.4390834, 2015.

T. J. Dolinsky, J. E. Nielsen, J. A. Mccammon, and N. A. Baker, PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations, Nucleic acids research, vol.32, p.441519, 2004.

S. Jo, T. Kim, V. G. Iyer, and W. Im, CHARMM-GUI: a web-based graphical user interface for CHARMM, vol.29, p.18351591, 2008.
DOI : 10.1002/jcc.20945

W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, Comparison of simple potential functions for simulating liquid water, The Journal of chemical physics, vol.79, issue.2, pp.926-961, 1983.

J. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid et al., Scalable molecular dynamics with NAMD, Journal of Computational Chemistry, vol.26, p.16222654, 2005.
DOI : 10.1002/jcc.20289

URL : http://europepmc.org/articles/pmc2486339?pdf=render

R. B. Best, X. Zhu, J. Shim, P. E. Lopes, J. Mittal et al., Optimization of the additive CHARMM allatom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles, Journal of chemical theory and computation, vol.8, issue.9, p.3549273, 2012.

J. B. Klauda, R. M. Venable, J. A. Freites, J. W. O'connor, D. J. Tobias et al., Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. The journal of physical chemistry B, vol.114, p.2922408, 2010.

S. Jo, T. Kim, and W. Im, Automated builder and database of protein/membrane complexes for molecular dynamics simulations, PloS one, vol.2, issue.9, p.1963319, 2007.

Y. Miao, S. E. Nichols, P. M. Gasper, V. T. Metzger, and J. A. Mccammon, Activation and dynamic network of the M2 muscarinic receptor, Proceedings of the National Academy of Sciences of the United States of America, vol.110, issue.27, p.23781107, 2013.

P. Central and P. , , p.3703993

Y. Wang, C. B. Harrison, K. Schulten, and J. A. Mccammon, Implementation of Accelerated Molecular Dynamics in NAMD, Computational science & discovery, vol.4, issue.1, p.3115733, 2011.

W. Humphrey, A. Dalke, and K. Schulten, VMD: visual molecular dynamics, Journal of molecular graphics, vol.14, issue.1, pp.33-41, 1996.
DOI : 10.1016/0263-7855(96)00018-5

B. J. Grant, A. P. Rodrigues, K. M. Elsawy, J. A. Mccammon, and L. S. Caves, Bio3d: an R package for the comparative analysis of protein structures, Bioinformatics, vol.22, issue.21, pp.2695-2701, 2006.