A. L. Fairhall, G. D. Lewen, W. Bialek, D. Ruyter-van-steveninck, and R. R. , Efficiency and ambiguity in an adaptive neural code, Nature, vol.412, issue.6849, p.11518957, 2001.

B. Grothe, M. Pecka, and D. Mcalpine, Mechanisms of Sound Localization in Mammals, Physiological Reviews, vol.90, issue.3, p.20664077, 2010.

T. Tchumatchenko, A. Malyshev, F. Wolf, and M. Volgushev, Ultrafast Population Encoding by Cortical Neurons, Journal of Neuroscience, vol.31, issue.34, p.21865460, 2011.

P. L. Smith and R. Ratcliff, Psychology and neurobiology of simple decisions, Trends in Neurosciences, vol.27, issue.3, p.15036882, 2004.

Y. Miyashita and H. S. Chang, Neuronal correlate of pictorial short-term memory in the primate temporal cortex, Nature, vol.331, issue.6151, p.3340148, 1988.

W. Bair and J. A. Movshon, Adaptive Temporal Integration of Motion in Direction-Selective Neurons in Macaque Visual Cortex, Journal of Neuroscience, vol.24, issue.33, p.15317857, 2004.

A. Bernacchia, H. Seo, D. Lee, and X. J. Wang, A reservoir of time constants for memory traces in cortical neurons, Nature Neuroscience, vol.14, issue.3, p.21317906, 2011.

J. D. Murray, A. Bernacchia, D. J. Freedman, R. Romo, J. D. Wallis et al., A hierarchy of intrinsic timescales across primate cortex, Nature Neuroscience, vol.17, issue.12, p.25383900, 2014.

X. J. Wang, Synaptic reverberation underlying mnemonic persistent activity, Trends in Neurosciences, vol.24, issue.8, p.11476885, 2001.

X. J. Wang, Decision Making in Recurrent Neuronal Circuits, Neuron, vol.60, issue.2, p.18957215, 2008.

A. Litwin-kumar and B. Doiron, Slow dynamics and high variability in balanced cortical networks with clustered connections, Nature Neuroscience, vol.15, issue.11, p.23001062, 2012.

C. Huang and B. Doiron, Once upon a (slow) time in the land of recurrent neuronal networks, vol.46, p.28756341, 2017.

D. V. Buonomano and W. Maass, State-dependent computations: Spatiotemporal processing in cortical networks, Nature Reviews Neuroscience, vol.10, issue.2, p.19145235, 2009.

R. S. Zucker and W. G. Regehr, Short-Term Synaptic Plasticity, Annual Review of Physiology, vol.64, issue.1, p.11826273, 2002.

H. Markram, Y. Wang, and M. Tsodyks, Differential signaling via the same axon of neocortical pyramidal neurons, Proceedings of the National Academy of Sciences, 1998.

N. R. Newberry and R. A. Nicoll, Direct hyperpolarizing action of baclofen on hippocampal pyramidal cells, Nature, vol.308, issue.5958, pp.450-452

A. M. Batchelor, D. J. Madge, and J. Garthwaite, Synaptic activation of metabotropic glutamate receptors in the parallel Fibre-Purkinje cell pathway in rat cerebellar slices, Neuroscience, vol.63, issue.4, pp.911-915, 1994.

J. Garthwaite and . Glutamate, nitric oxide and cell-cell signalling in the nervous system, vol.14, p.1708538, 1991.

R. Lester, J. D. Clements, G. L. Westbrook, and C. E. Jahr, Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents, Nature, vol.346, issue.6284, p.1974037, 1990.

D. Johnston and W. Sms, Foundations of cellular neurophysiology, 1995.

M. J. Berridge, M. D. Bootman, and H. L. Roderick, Calcium: Calcium signalling: Dynamics, homeostasis and remodelling, Nature Reviews Molecular cell biology, vol.4, issue.7, p.12838335, 2003.

A. Gal, D. Eytan, A. Wallach, M. Sandler, J. Schiller et al., Dynamics of Excitability over Extended Timescales in Cultured Cortical Neurons, Journal of Neuroscience, vol.30, issue.48, p.21123579, 2010.

L. Camera, G. Rauch, A. Thurbon, D. Lü-scher-hr, W. Senn et al., Multiple Time Scales of Temporal Response in Pyramidal and Fast Spiking Cortical Neurons, Journal of Neurophysiology, vol.96, issue.6, p.16807345, 2006.

J. Benda and A. Herz, A Universal Model for Spike-Frequency Adaptation, Neural Computation, vol.15, issue.11, p.14577853, 2003.

B. Ermentrout, M. Pascal, and B. Gutkin, The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators, Neural Computation, vol.13, issue.6, p.11387047, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01686451

M. H. Hennig, Theoretical models of synaptic short term plasticity, Frontiers in Computational Neuroscience, vol.7, 2013.

H. R. Wilson and J. D. Cowan, Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons, Biophysical Journal, vol.12, issue.1, pp.1-24, 1972.

H. R. Wilson and J. D. Cowan, A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue, Kybernetik, vol.13, issue.2, p.4767470, 1973.

H. Sompolinsky, A. Crisanti, and H. J. Sommers, Chaos in random neural networks, Physical Review Letters, vol.61, issue.3, p.10039285, 1988.

L. F. Abbott, Decoding neuronal firing and modelling neural networks, Quarterly Reviews of Biophysics, vol.27, issue.3, p.7899551, 1994.

D. Amit and N. Brunel, Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex, Cerebral Cortex, vol.7, issue.3, p.9143444, 1997.

N. Brunel, Dynamics of networks of randomly connected excitatory and inhibitory spiking neurons, Journal of Physiology Paris, vol.94, issue.5-6, pp.1084-1090, 2000.

F. Mastrogiuseppe and S. Ostojic, Intrinsically-generated fluctuating activity in excitatory-inhibitory networks, PLoS Computational Biology, vol.13, issue.4, pp.1-40, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-02142991

K. Rajan, L. F. Abbott, and H. Sompolinsky, Stimulus-dependent suppression of chaos in recurrent neural networks, Physical Review E, vol.82, issue.1, pp.1-5, 2010.

J. Kadmon and H. Sompolinsky, Transition to chaos in random neuronal networks, Physical Review X, 2015.
DOI : 10.1103/physrevx.5.041030

URL : http://link.aps.org/pdf/10.1103/PhysRevX.5.041030


K. Rajan and L. F. Abbott, Eigenvalue spectra of random matrices for neural networks, Physical Review Letters, vol.97, issue.18, pp.2-5, 2006.

C. Bimbard, E. Ledoux, and S. Ostojic, Instability to a heterogeneous oscillatory state in randomly connected recurrent networks with delayed interactions, Physical Review E, vol.94, issue.6, pp.3-8, 2016.

J. Schuecker, S. Goedeke, and M. Helias, Optimal sequence memory in driven random networks, Physical Review X, vol.8, issue.4, p.41029, 2018.

J. Aljadeff, M. Stern, and T. Sharpee, Transition to Chaos in Random Networks with Cell-Type-Specific Connectivity, Physical Review Letters, vol.114, issue.8, p.25768781, 2015.

O. Harish and D. Hansel, Asynchronous Rate Chaos in Spiking Neuronal Circuits, PLoS Computational Biology, vol.11, issue.7, p.26230679, 2015.

M. Stern, H. Sompolinsky, and L. F. Abbott, Dynamics of random neural networks with bistable units, Physical Review E, vol.90, issue.6, pp.1-7, 2014.

A. Lerchner, G. Sterner, J. Hertz, and M. Ahmadi, Mean field theory for a balanced hypercolumn model of orientation selectivity in primary visual cortex. Network: Computation in Neural Systems, vol.17, pp.131-150, 2006.

B. Dummer, S. Wieland, and B. Lindner, Self-consistent determination of the spike-train power spectrum in a neural network with sparse connectivity, Frontiers in Computational Neuroscience, vol.8, pp.1-12, 2014.

S. Wieland, D. Bernardi, T. Schwalger, and B. Lindner, Slow fluctuations in recurrent networks of spiking neurons, Phys Rev E, vol.92, p.40901, 2015.

S. Ostojic and N. Brunel, From Spiking Neuron Models to Linear-Nonlinear Models, PLoS Computational Biology, vol.7, issue.1, p.21283777, 2011.
DOI : 10.1371/journal.pcbi.1001056

URL : https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1001056&type=printable

T. W. Troyer and K. D. Miller, Physiological Gain Leads to High ISI Variability in a Simple Model of a Cortical Regular Spiking Cell, Neural Computation, vol.9, issue.5, p.9188190, 1997.

B. K. Murphy and K. D. Miller, Balanced amplification: a new mechanism of selective amplification of neural activity patterns, Neuron, vol.61, issue.4, p.19249282, 2009.

Y. Ahmadian, D. B. Rubin, and K. D. Miller, Analysis of the stabilized supralinear network, Neural computation, vol.25, issue.8, p.23663149, 2013.

H. Jaeger, The "echo state" approach to analysing and training recurrent neural networks, In: GMD-Forschungszentrum Informationstechnik Report, 2001.

D. Sussillo and L. F. Abbott, Generating Coherent Patterns of Activity from Chaotic Neural Networks, Neuron, vol.63, issue.4, p.19709635, 2009.

S. P. Muscinelli, W. Gerstner, and T. Schwalger, Single neuron properties shape chaotic dynamics in random neural networks, 2018.

D. A. Brown and . M-current, From Discovery to Single Channel Currents, pp.15-26, 2000.

D. A. Stanley, B. L. Bardakjian, M. L. Spano, and W. L. Ditto, Stochastic amplification of calcium-activated potassium currents in Ca2+ microdomains, Journal of Computational Neuroscience, vol.31, issue.3, p.21538141, 2011.

R. Naud, N. Marcille, C. Clopath, and W. Gerstner, Firing patterns in the adaptive exponential integrate-andfire model, Biological Cybernetics, vol.99, issue.4-5, p.19011922, 2008.

T. Schwalger, K. Fisch, J. Benda, and B. Lindner, How noisy adaptation of neurons shapes interspike interval histograms and correlations, PLoS Computational Biology, vol.6, issue.12, p.21187900, 2010.

J. Ladenbauer, M. Augustin, and K. Obermayer, How adaptation currents change threshold, gain and variability of neuronal spiking, Journal of Neurophysiology, vol.111, issue.5, p.24174646, 2013.

M. Richardson, N. Brunel, and V. Hakim, From Subthreshold to Firing-Rate Resonance, Journal of Neurophysiology, vol.89, issue.5, p.12611957, 2003.

N. Brunel, V. Hakim, and M. Richardson, Firing-rate resonance in a generalized integrate-and-fire neuron with subthreshold resonance, Physical Review E, vol.67, issue.5, p.51916, 2003.

J. Ladenbauer, A. M. Shiau, L. J. Obermayer, and K. , Impact of adaptation currents on synchronization of coupled exponential integrate-and-fire neurons, PLoS Computational Biology, vol.8, issue.4, p.22511861, 2012.

M. Augustin, J. Ladenbauer, and K. Obermayer, How adaptation shapes spike rate oscillations in recurrent neuronal networks, Frontiers in Computational Neuroscience, vol.7, issue.9, p.23450654, 2013.

T. Schwalger and B. Lindner, Patterns of interval correlations in neural oscillators with adaptation, Frontiers in Computational Neuroscience, vol.7, p.24348372, 2013.

C. R. Laing and C. C. Chow, A Spiking Neuron Model for Binocular Rivalry, Journal of Computational Neuroscience, vol.12, issue.1, p.11932559, 2002.

R. Naud and W. Gerstner, Coding and Decoding with Adapting Neurons: A Population Approach to the PeriStimulus Time Histogram, PLoS Computational Biology, vol.8, issue.10, p.23055914, 2012.

C. Pozzorini, R. Naud, S. Mensi, and W. Gerstner, Temporal whitening by power-law adaptation in neocortical neurons, Nature Neuroscience, vol.16, issue.7, p.23749146, 2013.

M. Augustin, J. Ladenbauer, F. Baumann, and K. Obermayer, Low-dimensional spike rate models derived from networks of adaptive integrate-and-fire neurons: Comparison and implementation, PLoS Computational Biology, vol.13, issue.6, pp.1-46, 2017.

P. J. Sjöströ-m, G. G. Turrigiano, and S. B. Nelson, Rate, Timing, and Cooperativity Jointly Determine Cortical Synaptic Plasticity, Neuron, vol.32, issue.6, p.11754844, 2001.

H. Ko, S. B. Hofer, B. Pichler, K. A. Buchanan, M. Sjöströ-m-pj et al., Functional specificity of local synaptic connections in neocortical networks, Nature, vol.473, issue.7345, p.21478872, 2011.

D. Martí, N. Brunel, and S. Ostojic, Correlations between synapses in pairs of neurons slow down dynamics in randomly connected neural networks, Physical Review E, vol.97, issue.6, p.30011528, 2018.

F. Mastrogiuseppe and S. Ostojic, Linking Connectivity, Dynamics, and Computations in Low-Rank Recurrent Neural Networks, Neuron, vol.99, issue.3, p.30057201, 2018.

D. Sussillo, Neural circuits as computational dynamical systems, Current Opinion in Neurobiology, vol.25, p.24509098, 2014.

O. Barak, Recurrent neural networks as versatile tools of neuroscience research, Current Opinion in Neurobiology, vol.46, p.28668365, 2017.

W. Nicola and C. Clopath, Supervised learning in spiking neural networks with FORCE training, Nature Communications, vol.8, issue.1, p.29263361, 2017.

G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, and W. Maass, Long short-term memory and learning-tolearn in networks of spiking neurons, 2018.

S. Ostojic, Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons, Nature Neuroscience, vol.17, issue.4, p.24561997, 2014.