M. Ieven, S. Coenen, K. Loens, C. Lammens, F. Coenjaerts et al., Aetiology of lower respiratory tract infection in adults in primary care: a prospective study in 11 European countries, Clin Microbiol Infect, vol.24, pp.1158-63, 2018.

S. Jain, W. H. Self, R. G. Wunderink, S. Fakhran, R. Balk et al., Community-acquired pneumonia requiring hospitalization among U.S. adults, N Engl J Med, vol.373, pp.415-442, 2015.

L. J. Quinton and J. P. Mizgerd, Dynamics of lung defense in pneumonia: resistance, resilience, and remodeling, Annu Rev Physiol, vol.77, pp.407-437, 2015.

T. F. Schäberle and I. M. Hack, Overcoming the current deadlock in antibiotic research, Trends Microbiol, vol.22, pp.165-172, 2014.

. Who, Action Plan on Antimicrobial Resistance

A. Savva and T. Roger, Targeting toll-like receptors: promising therapeutic strategies for the management of sepsis-associated pathology and infectious diseases, Front Immunol, vol.4, p.387, 2013.

R. Hancock, A. Nijnik, and D. J. Philpott, Modulating immunity as a therapy for bacterial infections, Nat Rev Microbiol, vol.10, pp.243-54, 2012.
DOI : 10.1038/nrmicro2745

M. A. Kinnebrew, C. Ubeda, L. A. Zenewicz, N. Smith, R. A. Flavell et al., Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection, J Infect Dis, vol.201, pp.534-577, 2010.
DOI : 10.1086/650203

URL : https://academic.oup.com/jid/article-pdf/201/4/534/18060407/201-4-534.pdf

K. Brandl, G. Plitas, C. N. Mihu, C. Ubeda, T. Jia et al., Vancomycinresistant enterococci exploit antibiotic-induced innate immune deficits, Nature, vol.455, pp.804-811, 2008.
DOI : 10.1038/nature07250

URL : http://europepmc.org/articles/pmc2663337?pdf=render

M. C. Abt, C. G. Buffie, B. Su?ac, S. Becattini, R. A. Carter et al., TLR-7 activation enhances IL-22-mediated colonization resistance against vancomycin-resistant enterococcus, Sci Transl Med, vol.8, pp.327-352, 2016.
DOI : 10.1126/scitranslmed.aad6663

URL : https://stm.sciencemag.org/content/scitransmed/8/327/327ra25.full.pdf

A. Vijayan, M. Rumbo, C. Carnoy, and J. Sirard, Compartmentalized antimicrobial defenses in response to flagellin, Trends Microbiol, vol.26, pp.423-458, 2018.
DOI : 10.1016/j.tim.2017.10.008

URL : https://hal.archives-ouvertes.fr/inserm-01671191

M. Vijay-kumar, J. D. Aitken, C. J. Sanders, A. Frias, V. M. Sloane et al., Flagellin treatment protects against chemicals, bacteria, viruses, and radiation, J Immunol, vol.180, pp.8280-8285, 2008.
DOI : 10.4049/jimmunol.180.12.8280

URL : http://www.jimmunol.org/content/180/12/8280.full.pdf

I. Jarchum, M. Liu, L. Lipuma, and E. G. Pamer, Toll-like receptor 5 stimulation protects mice from acute Clostridium difficile colitis, Infect Immun, vol.79, pp.1498-503, 2011.

E. Andersen-nissen, T. R. Hawn, K. D. Smith, A. Nachman, A. E. Lampano et al., Cutting edge: Tlr5-/-mice are more susceptible to Escherichia coli urinary tract infection, J Immunol, vol.178, pp.4717-4737, 2007.
DOI : 10.4049/jimmunol.178.8.4717

URL : http://www.jimmunol.org/content/178/8/4717.full.pdf

N. Muñoz, L. Van-maele, J. M. Marqués, A. Rial, J. Sirard et al., Mucosal administration of flagellin protects mice from Streptococcus pneumoniae lung infection, Infect Immun, vol.78, pp.4226-4259, 2010.

F. Yu, M. D. Cornicelli, M. A. Kovach, M. W. Newstead, X. Zeng et al., Flagellin stimulates protective lung mucosal immunity: role of cathelicidin-related antimicrobial peptide, J Immunol, vol.185, pp.1142-1151, 2010.

B. Zhang, B. Chassaing, Z. Shi, R. Uchiyama, Z. Zhang et al., Viral infection. Prevention and cure of rotavirus infection via TLR5/NLRC4-mediated production of IL-22 and IL-18, Science, vol.346, pp.861-866, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01290555

M. S. Hossain, S. Ramachandiran, A. T. Gewirtz, and E. K. Waller, Recombinant TLR5 agonist CBLB502 promotes NK cell-mediated anti-CMV immunity in mice, PLoS ONE, vol.9, p.96165, 2014.

X. Liu, N. Gao, C. Dong, L. Zhou, Q. Mi et al., Flagellin-induced expression of CXCL10 mediates direct fungal killing and recruitment of NK cells to the cornea in response to Candida albicans infection, Eur J Immunol, vol.44, pp.2667-79, 2014.

R. Porte, D. Fougeron, N. Muñoz-wolf, J. Tabareau, A. Georgel et al., A toll-like receptor 5 agonist improves the efficacy of antibiotics in treatment of primary and influenza virus-associated pneumococcal mouse infections, Antimicrob Agents Chemother, vol.59, pp.6064-72, 2015.

L. Janot, J. Sirard, T. Secher, N. Noulin, L. Fick et al., Radioresistant cells expressing TLR5 control the respiratory epithelium's innate immune responses to flagellin, Eur J Immunol, vol.39, pp.1587-96, 2009.

L. Van-maele, D. Fougeron, J. L. Didierlaurent, A. Cayet, D. Tabareau et al., Airway structural cells regulate TLR5-mediated mucosal adjuvant activity, Mucosal Immunol, vol.7, pp.489-500, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-00925663

D. Fougeron, L. Van-maele, P. Songhet, D. Cayet, D. Hot et al., Indirect Toll-like receptor 5-mediated activation of conventional dendritic cells promotes the mucosal adjuvant activity of flagellin in the respiratory tract, Vaccine, vol.33, pp.3331-3372, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01182907

J. Foucquier and M. Guedj, Analysis of drug combinations: current methodological landscape, Pharmacol Res Perspect, vol.3, p.149, 2015.

G. G. Rao, J. Li, S. M. Garonzik, R. L. Nation, and A. Forrest, Assessment and modelling of antibacterial combination regimens, Clin Microbiol Infect, vol.24, pp.689-96, 2017.

C. D. Doern, When does 2 plus 2 equal 5? A review of antimicrobial synergy testing, J Clin Microbiol, vol.52, pp.4124-4132, 2014.

C. W. Norden, H. Wentzel, and E. Keleti, Comparison of techniques for measurement of in vitro antibiotic synergism, J Infect Dis, vol.140, pp.629-662, 1979.

L. Van-maele, C. Carnoy, D. Cayet, S. Ivanov, R. Porte et al., Activation of Type 3 innate lymphoid cells and interleukin 22 secretion in the lungs during Streptococcus pneumoniae infection, J Infect Dis, vol.210, pp.493-503, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01182903

C. Paget, S. Ivanov, J. Fontaine, J. Renneson, F. Blanc et al., Interleukin-22 is produced by invariant natural killer T lymphocytes during influenza A virus infection: potential role in protection against lung epithelial damages, J Biol Chem, vol.287, pp.8816-8845, 2012.

C. Paget, S. Ivanov, J. Fontaine, F. Blanc, M. Pichavant et al., Potential role of invariant NKT cells in the control of pulmonary inflammation and CD8+ T cell response during acute influenza A virus H3N2 pneumonia, J Immunol, vol.186, pp.5590-602, 2011.

D. Santo, C. Arscott, R. Booth, S. Karydis, I. Jones et al., Invariant NKT cells modulate the suppressive activity of IL-10-secreting neutrophils differentiated with serum amyloid A, Nat Immunol, vol.11, pp.1039-1085, 2010.

C. Nempont, D. Cayet, M. Rumbo, C. Bompard, V. Villeret et al., Deletion of flagellin's hypervariable region abrogates antibody-mediated neutralization and systemic activation of TLR5-dependent immunity, J Immunol, vol.181, pp.2036-2079, 2008.

J. D. Planer, M. A. Hulverson, J. A. Arif, R. M. Ranade, R. Don et al., Synergy testing of FDA-approved drugs identifies potent drug combinations against Trypanosoma cruzi, PLoS Negl Trop Dis, vol.8, 2014.

L. A. Mcnamee and A. G. Harmsen, Both influenza-induced neutrophil dysfunction and neutrophil-independent mechanisms contribute to increased susceptibility to a secondary Streptococcus pneumoniae infection, Infect Immun, vol.74, pp.6707-6728, 2006.

A. Kudva, E. V. Scheller, K. M. Robinson, C. R. Crowe, S. M. Choi et al., Influenza A inhibits Th17-mediated host defense against bacterial pneumonia in mice, J Immunol, vol.186, pp.1666-74, 2011.

A. Rynda-apple, K. M. Robinson, and J. F. Alcorn, Influenza and bacterial superinfection: illuminating the immunologic mechanisms of disease, Infect Immun, vol.83, pp.3764-70, 2015.

J. A. Mccullers, The co-pathogenesis of influenza viruses with bacteria in the lung, Nat Rev Microbiol, vol.12, pp.252-62, 2014.

A. N. Honko and S. B. Mizel, Mucosal administration of flagellin induces innate immunity in the mouse lung, Infect Immun, vol.72, pp.6676-6685, 2004.

A. Didierlaurent, I. Ferrero, L. A. Otten, B. Dubois, M. Reinhardt et al., Flagellin promotes myeloid differentiation factor 88-dependent development of Th2-type response, J Immunol, vol.172, pp.6922-6952, 2004.

M. M. Leiva-juárez, J. K. Kolls, and S. E. Evans, Lung epithelial cells: therapeutically inducible effectors of antimicrobial defense, Mucosal Immunol, vol.11, pp.21-34, 2018.

A. A. Anas, M. Van-lieshout, T. Claushuis, A. F. De-vos, S. Florquin et al., Lung epithelial MyD88 drives early pulmonary clearance of Pseudomonas aeruginosa by a flagellin dependent mechanism, Am J Physiol Lung Cell Mol Physiol, vol.311, pp.219-228, 2016.

E. S. Donkor, Understanding the pneumococcus: transmission and evolution, Front Cell Infect Microbiol, 2013.

D. I. Andersson and D. Hughes, Antibiotic resistance and its cost: is it possible to reverse resistance?, Nat Rev Microbiol, vol.8, pp.260-71, 2010.

F. De-velde, J. W. Mouton, B. De-winter, T. Van-gelder, and B. Koch, Clinical applications of population pharmacokinetic models of antibiotics: challenges and perspectives, Pharmacol Res, vol.134, pp.280-288, 2018.