H. Sompolinsky, A. Crisanti, and H. J. Sommers, Chaos in random neural networks, Phys. Rev. Lett, vol.61, p.10039285, 1988.
DOI : 10.1103/physrevlett.61.259

L. Molgedey, J. Schuchhardt, and H. G. Schuster, Suppressing chaos in neural networks by noise, Phys. Rev. Lett, vol.69, p.10046895, 1992.

B. Cessac, B. Doyon, M. Quoy, and M. Samuelides, Mean-field equations, bifurcation map and route to chaos in discrete time neural networks, Physica D: Nonlinear Phenomena, vol.74, pp.90024-90032, 1994.

B. Doyon, B. Cessac, M. Quoy, and M. Samuelides, Destabilization and route to chaos in neural networks with random connectivity, Advances in Neural Information Processing Systems, vol.5, pp.549-555, 1993.

D. V. Buonomano and W. Maass, State-dependent computations: spatiotemporal processing in cortical networks, Nature Review Neuroscience, vol.10, p.19145235, 2009.

D. Sussillo and L. F. Abbott, Generating coherent patterns of activity from chaotic neural networks, Neuron, vol.63, p.19709635, 2009.

R. Laje and D. V. Buonomano, Robust timing and motor patterns by taming chaos in recurrent neural networks, Nature Neuroscience, vol.16, p.23708144, 2013.

D. Sussillo and O. Barak, Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks, Neural Comput, vol.5, issue.3, p.23272922, 2013.

G. Wainrib and J. Touboul, Topological and dynamical complexity of random neural networks, Phys. Rev. Lett, vol.110, p.25166580, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00942212

T. Toyoizumi and L. F. Abbott, Beyond the edge of chaos: amplification and temporal integration by recurrent networks in the chaotic regime, Phys. Rev. E, vol.84, p.22181445, 2011.

K. Rajan, L. F. Abbot, and H. Sompolinsky, Stimulus-dependent suppression of chaos in recurrent neural networks, Phys. Rev. E, vol.82, p.11903, 2010.

J. Aljadeff, M. Stern, and T. O. Sharpee, Transition to chaos in random networks with cell-type-specific connectivity, Phys. Rev. Lett, vol.114, p.25768781, 2015.
DOI : 10.1103/physrevlett.114.088101

URL : https://link.aps.org/accepted/10.1103/PhysRevLett.114.088101

J. Aljadeff, D. Renfrew, M. Vague, and T. O. Sharpee, On the low dimensional dynamics of structured random networks, 2015.

M. Stern, H. Sompolinsky, and L. F. Abbott, Dynamics of random neural networks with bistable units, Phys. Rev. E, vol.90, p.25615132, 2014.

S. Goedeke, J. Schuecker, and M. Helias, Noise dynamically suppresses chaos in random neural networks, 2016.

J. Kadmon and H. Sompolinsky, Transition to chaos in random neuronal networks, Phys. Rev. X, vol.5, p.4103, 2015.

O. Harish and D. Hansel, Asynchronous rate chaos in spiking neuronal circuits, PLOS Comput. Biol, vol.11, issue.7, p.26230679, 2015.

N. Brunel, Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons, Journal of Computational Neuroscience, vol.8, p.10809012, 2000.

S. Ostojic, Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons, Nature Neuroscience, vol.17, p.24561997, 2014.

R. Engelken, F. Farkhooi, D. Hansel, C. Van-vreeswijk, F. Wolf et al., Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons, 2015.

S. Ostojic, Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons, 2015.

G. Hennequin, T. P. Vogels, and W. Gerstner, Non-normal amplification in random balanced neuronal networks, Physical Review E, vol.86, p.11909, 2012.

G. Hennequin, T. P. Vogels, and W. Gerstner, Optimal Control of Transient Dynamics in Balanced Networks Supports Generation of Complex Movements, Neuron, vol.82, p.24945778, 2014.

T. W. Troyer and K. D. Miller, Physiological Gain Leads to High ISI Variability in a Simple Mo del of a Cortical Regular Spiking Cell, Neural Computation, vol.9, p.9188190, 1997.

B. K. Murphy and K. D. Miller, Balanced amplification: a new mechanism of selective amplification of neural activity patterns, Neuron, vol.61, p.19249282, 2009.

Y. Ahmadian, D. B. Rubin, and K. D. Miller, Analysis of the stabilized supralinear network, Neural Computation. 25-8, 1994.

D. B. Rubin, S. D. Van-hooser, and K. D. Miller, The stabilized supralinear network: a unifying circuit motif underlying multi-input integration in sensory cortex, Neuron, vol.85, p.25611511, 2015.

S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, 2007.

K. Rajan and L. F. Abbott, Eigenvalue spectra of random matrices for neural networks, Phys. Rev. Lett, vol.97, p.17155583, 2006.

T. Tao, V. Vu, and M. Krishnapur, Random matrices: Universality of ESDs and the circular law, The Annals of Probability, vol.38, pp.2023-2065, 2010.

T. Tao, Outliers in the spectrum of iid matrices with bounded rank perturbations, Probab. Theory Related Fields, vol.155, pp.231-263, 2013.

H. Sompolinsky and A. Zippelius, Relaxational dynamics of the Edwards-Anderson model and the meanfield theory of spin-glasses, Phys. Rev. B, vol.25, p.6860, 1982.

B. Arous, G. Guionnet, and A. , Large deviations for Langevin spin glass dynamics, The Annals of Probability, vol.102, pp.455-509, 1995.
DOI : 10.1007/bf01198846

J. Aljadeff, D. Renfrew, and M. Stern, Eigenvalues of block structured asymmetric random matrices, Journal of Mathematical Physics, 2015.

A. Siegert, On the 1st passage time probability problem, Phys. Rev, vol.81, pp.617-623, 1951.
DOI : 10.1103/physrev.81.617

N. Brunel and V. Hakim, Fast global oscillations in networks of integrate-and-fire neurons with low firing rates, Neural Comput, vol.11, pp.1621-1671, 1999.

S. Ostojic and N. Brunel, From Spiking Neuron Models to Linear-Nonlinear Models, PLoS Comput. Biol, vol.7, issue.1, p.21283777, 2011.
DOI : 10.1371/journal.pcbi.1001056

URL : https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1001056&type=printable

E. S. Schaffer, S. S. Ostojic, and L. F. Abbott, A Complex-Valued Firing-Rate Model That Approximates the Dynamics of Spiking Networks, PLoS Comput. Biol, vol.9, issue.10, p.24204236, 2013.

D. J. Amit and N. Brunel, Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex, Cereb. Cortex, vol.7, issue.3, p.9143444, 1997.

S. Ostojic, Interspike interval distributions of spiking neurons driven by fluctuating inputs, J. Neurophysiol, vol.106, p.21525364, 2011.
DOI : 10.1152/jn.00830.2010

A. Grabska-barwinska and P. E. Latham, How well do mean field theories of spiking quadratic-integrateand-fire networks work in realistic parameter regimes?, J. Comput. Neurosci, vol.36, p.24091644, 2014.

N. Brunel, F. Chance, N. Fourcaud, and L. Abbott, Effects of synaptic noise and filtering on the frequency response of spiking neurons, Phys Rev Lett, vol.86, p.11289886, 2001.

O. Shriki, D. Hansel, and H. Sompolinsky, Rate models for conductance-based cortical neuronal networks, Neural Comput, vol.15, p.14511514, 2003.
DOI : 10.1162/08997660360675053

URL : https://hal.archives-ouvertes.fr/hal-00173803

A. Lerchner, G. Sterner, J. Hertz, and M. Ahmadi, Mean field theory for a balanced hypercolumn model of orientation selectivity in primary visual cortex, Network: Computation in Neural Systems, vol.17, p.16818394, 2006.

B. Dummer, S. Wieland, and B. Lindner, Self-consistent determination of the spike-train power spectrum in a neural network with sparse connectivity, Frontiers in Computational Neuroscience, vol.8, p.25278869, 2014.

S. Wieland, D. Bernardi, T. Schwalger, and B. Lindner, Slow fluctuations in recurrent networks of spiking neurons, Phys. Rev. E, vol.92, p.26565154, 2015.

T. Tetzlaff, M. Helias, G. T. Einevoll, and M. Diesmann, Decorrelation of Neural-Network Activity by Inhibitory Feedback, vol.8, p.23133368, 2012.

V. Pernice, B. Staude, S. Cardanobile, and S. Rotter, Recurrent interactions in spiking networks with arbitrary topology, Phys. Rev. E, vol.85, p.31916, 2012.
DOI : 10.1103/physreve.85.031916

URL : http://arxiv.org/pdf/1201.0288