E. K. Miller and J. D. Cohen, An integrative theory of prefrontal cortex function. Annual review of neuroscience, vol.24, pp.167-202, 2001.

M. Rigotti, Internal representation of task rules by recurrent dynamics: the importance of the diversity of neural responses, Frontiers in computational neuroscience, p.4, 2010.

W. F. Asaad, G. Rainer, and E. K. Miller, Neural activity in the primate prefrontal cortex during associative learning, Neuron, vol.21, issue.6, p.9883732, 1998.

P. Barone and J. P. Joseph, Prefrontal cortex and spatial sequencing in macaque monkey, Exp Brain Res, vol.78, issue.3, p.2612591, 1989.

M. Sakagami and H. Niki, Encoding of behavioral significance of visual stimuli by primate prefrontal neurons: relation to relevant task conditions. Experimental Brain Research, vol.97, p.8187854, 1994.

M. Watanabe, Frontal units of the monkey coding the associative significance of visual and auditory stimuli. Experimental Brain Research, vol.89, p.1623971, 1992.

M. Rigotti, The importance of mixed selectivity in complex cognitive tasks, Nature, 2013.

P. F. Dominey, M. A. Arbib, and J. J. , A Model of Corticostriatal Plasticity for Learning Oculomotor Associations and Sequences, J Cogn Neurosci, vol.7, issue.3, p.25, 1995.

W. Maass, T. Natschlager, and H. Markram, Real-time computing without stable states: a new framework for neural computation based on perturbations, Neural Comput, vol.14, issue.11, p.12433288, 2002.

H. Jaeger, The" echo state" approach to analysing and training recurrent neural networks-with an erratum note, German National Research Center for Information Technology GMD Technical Report, p.148, 2001.

H. Jaeger and H. Haas, Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication, Science, vol.304, issue.5667, p.15064413, 2004.

E. L. Bartlett and X. Wang, Long-lasting modulation by stimulus context in primate auditory cortex, vol.94, p.15772236, 2005.
DOI : 10.1152/jn.01124.2004

M. Brosch and C. E. Schreiner, Sequence sensitivity of neurons in cat primary auditory cortex, Cerebral Cortex, vol.10, issue.12, p.11073865, 2000.

M. P. Kilgard and M. M. Merzenich, Distributed representation of spectral and temporal information in rat primary auditory cortex. Hearing research, vol.134, pp.16-28, 1999.

D. Nikolic, Distributed fading memory for stimulus properties in the primary visual cortex, PLoS Biol, vol.7, issue.12, p.1000260, 2009.

H. Ju, Spatiotemporal Memory Is an Intrinsic Property of Networks of Dissociated Cortical Neurons, The Journal of Neuroscience, vol.35, issue.9, p.25740531, 2015.

R. Pascanu and H. Jaeger, A neurodynamical model for working memory, Neural Networks, vol.24, issue.2, p.21036537, 2011.

R. Legenstein, A reward-modulated hebbian learning rule can explain experimentally observed network reorganization in a brain control task, The Journal of Neuroscience, vol.30, issue.25, p.20573887, 2010.

W. Maass, P. Joshi, and E. D. Sontag, Computational aspects of feedback in neural circuits, PLoS Comput Biol, vol.3, issue.1, p.17238280, 2007.

D. Sussillo and L. F. Abbott, Generating coherent patterns of activity from chaotic neural networks. Neuron, vol.63, pp.544-557, 2009.

R. Quilodran, M. Rothe, and P. E. , Behavioral shifts and action valuation in the anterior cingulate cortex, Neuron, vol.57, issue.2, pp.314-339, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00906686

E. Procyk and P. S. Goldman-rakic, Modulation of dorsolateral prefrontal delay activity during self-organized behavior, J Neurosci, vol.26, issue.44, p.17079659, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00132158

M. Khamassi, Behavioral Regulation and the Modulation of Information Coding in the Lateral Prefrontal and Cingulate Cortex, Cerebral Cortex, p.114, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01219972

E. Procyk and P. S. Goldman-rakic, Modulation of dorsolateral prefrontal delay activity during self-organized behavior, The Journal of Neuroscience, vol.26, issue.44, p.17079659, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00132158

P. F. Dominey and F. Ramus, Neural network processing of natural language: I. Sensitivity to serial, temporal and abstract structure of language in the infant, Language and Cognitive Processes, vol.15, issue.1, p.40, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00260032

X. Hinaut and P. F. Dominey, Real-time parallel processing of grammatical structure in the fronto-striatal system: a recurrent network simulation study using reservoir computing, PLoS One, vol.8, issue.2, pp.1-18, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01968923

X. Hinaut, Corticostriatal response selection in sentence production: Insights from neural network simulation with reservoir computing. Brain and language, vol.150, pp.54-68, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01906521

M. H. Tong, Learning grammatical structure with Echo State Networks, Neural Networks, vol.20, issue.3, p.9, 2007.

V. Mante, Context-dependent computation by recurrent dynamics in prefrontal cortex, Nature, vol.503, issue.7474, pp.78-84, 2013.

B. Schrauwen, Improving reservoirs using intrinsic plasticity, Neurocomputing, vol.71, issue.7, pp.1159-1171, 2008.

B. B. Averbeck, P. E. Latham, and P. A. , Neural correlations, population coding and computation, Nature reviews neuroscience, vol.7, issue.5, p.16760916, 2006.

C. Amiez, Modulation of feedback related activity in the rostral anterior cingulate cortex during trial and error exploration, NeuroImage, vol.63, issue.3, pp.1078-1090, 2012.

X. Cai and C. Padoa-schioppa, Neuronal encoding of subjective value in dorsal and ventral anterior cingulate cortex, The Journal of Neuroscience, vol.32, issue.11, pp.3791-3808, 2012.

F. A. Mansouri, K. Matsumoto, and K. Tanaka, Prefrontal cell activities related to monkeys' success and failure in adapting to rule changes in a Wisconsin Card Sorting Test analog, The Journal of Neuroscience, vol.26, issue.10, p.16525054, 2006.

J. Quintana and J. M. Fuster, From perception to action: temporal integrative functions of prefrontal and parietal neurons, Cerebral Cortex, vol.9, issue.3, p.10355901, 1999.

J. D. Murray, A hierarchy of intrinsic timescales across primate cortex, Nature neuroscience, 2014.

D. V. Buonomano and W. Maass, State-dependent computations: spatiotemporal processing in cortical networks, Nature Reviews Neuroscience, vol.10, issue.2, pp.113-125, 2009.

E. Astrand, Comparison of classifiers for decoding sensory and cognitive information from prefrontal neuronal populations, PloS one, vol.9, issue.1, 2014.

A. Bernacchia, A reservoir of time constants for memory traces in cortical neurons, Nature neuroscience, vol.14, issue.3, p.21317906, 2011.

S. Ganguli, D. Huh, and H. Sompolinsky, Memory traces in dynamical systems, Proceedings of the National Academy of Sciences, vol.105, issue.48, pp.18970-18975, 2008.

D. Verstraeten, An experimental unification of reservoir computing methods, Neural Networks, vol.20, issue.3, p.17517492, 2007.

O. L. White, D. D. Lee, and H. Sompolinsky, Short-term memory in orthogonal neural networks. Physical review letters, vol.92, p.15089576, 2004.

D. Durstewitz, J. K. Seamans, and T. J. Sejnowski, Neurocomputational models of working memory, Nature neuroscience, vol.3, p.11127836, 2000.

X. Wang, Synaptic reverberation underlying mnemonic persistent activity, Trends in neurosciences, vol.24, issue.8, p.11476885, 2001.

E. Balaguer-ballester, Attracting dynamics of frontal cortex ensembles during memory-guided decision-making, 2011.

D. Durstewitz, Abrupt transitions between prefrontal neural ensemble states accompany behavioral transitions during rule learning, Neuron, vol.66, issue.3, p.20471356, 2010.

D. Sussillo and O. Barak, Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks, Neural computation, vol.25, issue.3, pp.626-649, 2013.

P. F. Dominey, Complex sensory-motor sequence learning based on recurrent state representation and reinforcement learning, Biol Cybern, vol.73, issue.3, p.7548314, 1995.

P. K. Kuhl, Linguistic experience alters phonetic perception in infants by 6 months of age. Science, 1992, vol.255, p.1736364

M. Hermans and B. Schrauwen, Recurrent kernel machines: Computing with infinite echo state networks, Neural Computation, vol.24, issue.1, pp.104-133, 2012.

H. Jaeger, W. Maass, and P. J. , Special issue on echo state networks and liquid state machines, Neural Networks, vol.20, issue.3, pp.287-289, 2007.

B. Schrauwen, D. Verstraeten, and J. Van-campenhout, An overview of reservoir computing: theory, applications and implementations, Proceedings of the 15th European symposium on artificial neural networks, 2007.

A. Compte, Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model, Cerebral Cortex, vol.10, issue.9, p.10982751, 2000.

M. Griniasty, M. Tsodyks, and D. J. Amit, Conversion of temporal correlations between stimuli to spatial correlations between attractors, Neural Computation, vol.5, issue.1, pp.1-17, 1993.

X. Wang, Probabilistic decision making by slow reverberation in cortical circuits, Neuron, vol.36, issue.5, p.12467598, 2002.

O. Barak, From fixed points to chaos: three models of delayed discrimination. Progress in neurobiology, vol.103, p.23438479, 2013.

M. Rigotti, Attractor concretion as a mechanism for the formation of context representations. NeuroImage, vol.52, pp.833-847, 2010.

A. Saez, Abstract context representations in primate amygdala and prefrontal cortex, Neuron, vol.87, issue.4, pp.869-881, 2015.