E. Téglás, E. Vul, V. Girotto, M. Gonzalez, J. B. Tenenbaum et al., Pure Reasoning in 12-Month-Old Infants as Probabilistic Inference, Science, vol.332, p.21617069, 2011.

D. R. Bach and R. J. Dolan, Knowing how much you don't know: a neural organization of uncertainty estimates, Nat Rev Neurosci, vol.13, pp.572-586, 2012.

R. J. Dolan and P. Dayan, Goals and Habits in the Brain, Neuron, vol.80, p.24139036, 2013.

T. Behrens, M. W. Woolrich, M. E. Walton, and M. Rushworth, Learning the value of information in an uncertain world, Nat Neurosci, vol.10, pp.1214-1221, 2007.

M. R. Nassar, R. C. Wilson, B. Heasly, and J. I. Gold, An Approximately Bayesian Delta-Rule Model Explains the Dynamics of Belief Updating in a Changing Environment, J Neurosci, vol.30, pp.12366-12378, 2010.

C. Summerfield, T. E. Behrens, and E. Koechlin, Perceptual Classification in a Rapidly Changing Environment, Neuron, vol.71, p.21867887, 2011.

C. R. Gallistel, M. Krishan, Y. Liu, R. Miller, and P. E. Latham, The perception of probability, Psychol Rev, vol.121, pp.96-123, 2014.

A. Koriat, L. Sheffer, and H. Ma'ayan, Comparing objective and subjective learning curves: Judgments of learning exhibit increased underconfidence with practice, J Exp Psychol Gen, vol.131, pp.147-162, 2002.

A. Kepecs, N. Uchida, H. A. Zariwala, and Z. F. Mainen, Neural correlates, computation and behavioural impact of decision confidence, Nature, vol.455, pp.227-231, 2008.

S. Barthelmé and P. Mamassian, Evaluation of objective uncertainty in the visual system, PLoS Comput Biol, vol.5, 2009.

R. Kiani and M. N. Shadlen, Representation of confidence associated with a decision by neurons in the parietal cortex, Science, vol.324, pp.759-764, 2009.

R. Robert, A. , W. Allan, and R. , A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement, Classical conditioning II: Current research and theory, pp.64-99, 1972.

E. Payzan-lenestour and B. P. Risk, Unexpected Uncertainty, and Estimation Uncertainty: Bayesian Learning in Unstable Settings, PLoS Comput Biol, vol.7, 2011.

D. C. Knill and A. Pouget, The Bayesian brain: the role of uncertainty in neural coding and computation, Trends Neurosci, vol.27, pp.712-719, 2004.

A. Pouget, J. M. Beck, W. J. Ma, and P. E. Latham, Probabilistic brains: knowns and unknowns, Nat Neurosci, vol.16, p.23955561, 2013.

E. Bonawitz, S. Denison, T. L. Griffiths, and A. Gopnik, Probabilistic models, learning algorithms, and response variability: sampling in cognitive development, Trends Cogn Sci, vol.18, pp.497-500, 2014.

R. Legenstein and W. Maass, Ensembles of Spiking Neurons with Noise Support Optimal Probabilistic Inference in a Dynamically Changing Environment, PLoS Comput Biol, vol.10, p.25340749, 2014.

E. T. Jaynes, Probability Theory: The Logic of Science, 2003.

N. Yeung and C. Summerfield, Metacognition in human decision-making: confidence and error monitoring, Philos Trans R Soc B Biol Sci, vol.367, p.22492749, 2012.

D. Kahneman and A. Tversky, Prospect Theory: An Analysis of Decision under Risk, Econometrica, vol.47, p.263, 1979.

J. N. Rouder, P. L. Speckman, D. Sun, R. D. Morey, and G. Iverson, Bayesian t tests for accepting and rejecting the null hypothesis, Psychon Bull Rev, vol.16, pp.225-237, 2009.

A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari et al., Bayesian Data Analysis, Third Edition, 2013.

D. Kahneman and A. Tversky, Variants of uncertainty, Cognition, vol.11, pp.143-157, 1982.

B. Timmermans, L. Schilbach, A. Pasquali, and A. Cleeremans, Higher order thoughts in action: consciousness as an unconscious re-description process, Philos Trans R Soc B Biol Sci, vol.367, p.22492757, 2012.

A. Kepecs and Z. F. Mainen, A computational framework for the study of confidence in humans and animals, Philos Trans R Soc B Biol Sci, vol.367, pp.1322-1337, 2012.

M. Hsu, M. Bhatt, R. Adolphs, D. Tranel, and C. F. Camerer, Neural systems responding to degrees of uncertainty in human decision-making, Science, vol.310, pp.1680-1683, 2005.

P. Juslin and H. Olsson, Thurstonian and Brunswikian origins of uncertainty in judgment: A sampling model of confidence in sensory discrimination, Psychol Rev, vol.104, pp.344-366, 1997.

C. Sergent, S. Baillet, and S. Dehaene, Timing of the brain events underlying access to consciousness during the attentional blink, Nat Neurosci, vol.8, pp.1391-1400, 2005.

L. Charles, F. Van-opstal, S. Marti, and S. Dehaene, Distinct brain mechanisms for conscious versus subliminal error detection, NeuroImage, vol.73, p.23380166, 2013.

G. Gigerenzer, U. Hoffrage, and H. Kleinbölting, Probabilistic mental models: A Brunswikian theory of confidence, Psychol Rev, vol.98, p.1961771, 1991.

A. Koriat, The self-consistency model of subjective confidence, Psychol Rev, vol.119, p.22022833, 2012.

S. M. Fleming and H. C. Lau, How to measure metacognition, Front Hum Neurosci, vol.8, p.443, 2014.

V. De-gardelle and P. Mamassian, Does Confidence Use a Common Currency Across Two Visual Tasks?, Psychol Sci, vol.25, pp.1286-1288, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01048627

B. Bahrami, K. Olsen, P. E. Latham, A. Roepstorff, G. Rees et al., Optimally interacting minds, Science, vol.329, pp.1081-1085, 2010.

D. Kahneman and A. Tversky, Subjective probability: A judgment of representativeness, Cognit Psychol, vol.3, pp.430-454, 1972.

Y. Kareev, Not that bad after all: Generation of random sequences, J Exp Psychol Hum Percept Perform, vol.18, p.1189, 1992.

R. Falk and C. Konold, Making sense of randomness: Implicit encoding as a basis for judgment, Psychol Rev, vol.104, p.301, 1997.

Y. Kareev, Positive bias in the perception of covariation, Psychol Rev, vol.102, pp.490-502, 1995.

S. Barthelme and P. Mamassian, Flexible mechanisms underlie the evaluation of visual confidence, Proc Natl Acad Sci, vol.107, p.21076036, 2010.

S. M. Fleming and R. J. Dolan, The neural basis of metacognitive ability, Philos Trans R Soc B Biol Sci, vol.367, p.22492751, 2012.

D. Martino, B. Fleming, S. M. Garrett, N. Dolan, and R. J. , Confidence in value-based choice, Nat Neurosci, vol.16, p.23222911, 2013.

J. King and S. Dehaene, A model of subjective report and objective discrimination as categorical decisions in a vast representational space, Philos Trans R Soc B Biol Sci, vol.369, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01212024

V. R. Bejjanki, J. M. Beck, Z. Lu, and A. Pouget, Perceptual learning as improved probabilistic inference in early sensory areas, Nat Neurosci, vol.14, p.21460833, 2011.

N. Persaud, P. Mcleod, and A. Cowey, Post-decision wagering objectively measures awareness, Nat Neurosci, vol.10, pp.257-261, 2007.

Y. Komura, A. Nikkuni, N. Hirashima, T. Uetake, and A. Miyamoto, Responses of pulvinar neurons reflect a subject's confidence in visual categorization, Nat Neurosci, vol.16, p.23666179, 2013.

P. Mamassian, Overconfidence in an objective anticipatory motor task, Psychol Sci, vol.19, p.18578851, 2008.

J. Fiser, P. Berkes, G. Orbán, and M. Lengyel, Statistically optimal perception and learning: from behavior to neural representations, Trends Cogn Sci, vol.14, 2010.