D. Chiara and G. , Role of dopamine in the behavioural actions of nicotine related to addiction, Eur J Pharmacol, vol.393, pp.295-314, 2000.

E. J. Nestler and G. K. Aghajanian, Molecular and cellular basis of addiction, Science, vol.278, pp.58-63, 1997.

F. Marti, O. Arib, C. Morel, V. Dufresne, and U. Maskos, Smoke extracts and nicotine, but not tobacco extracts, potentiate firing and burst activity of ventral tegmental area dopaminergic neurons in mice, Neuropsychopharmacology, vol.36, pp.2244-2257, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00655431

F. E. Pontieri, G. Tanda, F. Orzi, D. Chiara, and G. , Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs, Nature, vol.382, pp.255-257, 1996.

D. Chiara, G. , and I. , Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats, Proc Natl Acad Sci U S A, vol.85, pp.5274-5278, 1988.

W. A. Corrigall, K. M. Coen, and K. L. Adamson, Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area, Brain Res, vol.653, pp.278-284, 1994.

J. P. Changeux, D. Bertrand, P. J. Corringer, S. Dehaene, and S. Edelstein, Brain nicotinic receptors: structure and regulation, role in learning and reinforcement, Brain Res Brain Res Rev, vol.26, pp.198-216, 1998.

S. A. Oakman, P. L. Faris, P. E. Kerr, C. Cozzari, and B. K. Hartman, Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area, J neurosci, vol.15, pp.5859-5869, 1995.

J. A. Dani, D. Ji, and F. M. Zhou, Synaptic plasticity and nicotine addiction, Neuron, vol.31, pp.349-352, 2001.

R. Giniatullin, A. Nistri, and J. L. Yakel, Desensitization of nicotinic ACh receptors: shaping cholinergic signaling, Trends Neurosci, vol.28, pp.371-378, 2005.

J. E. Henningfield, J. M. Stapleton, N. L. Benowitz, R. F. Grayson, and E. D. London, Higher levels of nicotine in arterial than in venous blood after cigarette smoking, Drug Alcohol Depend, vol.33, pp.23-29, 1993.

V. I. Pidoplichko, M. Debiasi, J. T. Williams, and J. A. Dani, Nicotine activates and desensitizes midbrain dopamine neurons, Nature, vol.390, pp.401-404, 1997.

J. P. Changeux, Nicotine addiction and nicotinic receptors: lessons from genetically modified mice, Nat Rev Neurosci, vol.11, pp.389-401, 2010.

A. Taly, P. J. Corringer, D. Guedin, P. Lestage, and J. P. Changeux, Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system, Nat Rev Drug Discov, vol.8, pp.733-750, 2009.

I. W. Jones and S. Wonnacott, Precise localization of (alpha)7 nicotinic acetylcholine receptors on glutamatergic axon terminals in the rat ventral tegmental area, J Neurosci, vol.24, pp.11244-11252, 2004.

M. R. Picciotto, M. Zoli, R. Rimondini, C. Lena, and L. M. Marubio, Acetylcholine receptors containing the (beta)2 subunit are involved in the reinforcing properties of nicotine, Nature, vol.391, pp.173-177, 1998.

M. Mameli-engvall, A. Evrard, S. Pons, U. Maskos, and T. H. Svensson, Hierarchical control of dopamine neuron-firing patterns by nicotinic receptors, Neuron, vol.50, pp.911-921, 2006.
URL : https://hal.archives-ouvertes.fr/pasteur-00176372

H. D. Mansvelder and D. S. Mcgehee, Long-Term Potentiation of Excitatory Inputs to Brain Reward Areas by Nicotine, Neuron, vol.27, pp.349-357, 2000.

H. D. Mansvelder, J. R. Keath, and D. S. Mcgehee, Synaptic Mechanisms Underlie Nicotine-Induced Excitability of Brain Reward Areas, Neuron, vol.33, pp.905-919, 2002.

A. R. Tapper, S. L. Mckinney, R. Nashmi, J. Schwarz, and P. Deshpande, Nicotine activation of (alpha)4* receptors: sufficient for reward, tolerance, and sensitization, Science, vol.306, pp.1029-1032, 2004.

R. Exley, N. Maubourguet, V. David, R. Eddine, and A. Evrard, Distinct contributions of nicotinic acetylcholine receptor subunit (alpha)4 and subunit (alpha)6 to the reinforcing effects of nicotine, Proc Natl Acad Sci U S A, vol.108, pp.7577-7582, 2011.

B. Katz and S. Thesleff, A study of the desensitization produced by acetylcholine at the motor end-plate, J Physiol, vol.138, pp.63-80, 1957.

C. Shelley and C. Sg, Desensitization and models of receptorchannel activation, J Physiol, vol.588, pp.1395-1397, 2010.

M. Graupner and B. Gutkin, Modeling nicotinic neuromodulation from global functional and network levels to nAChR based mechanisms, Acta Pharmacol Sin, vol.30, pp.681-693, 2009.

C. P. Fenster, M. F. Rains, B. Noerager, M. W. Quick, and L. Ra, Influence of subunit composition on desensitization of neuronal acetylcholine receptors at low concentrations of nicotine, J Neurosci, vol.17, pp.5747-5759, 1997.

J. B. Eaton, J. Peng, K. M. Schroeder, G. Aa, and J. D. Fryer, Characterization of human (alpha)4(beta)2-nicotinic acetylcholine receptors stably and heterologously expressed in native nicotinic receptor-null SH-EP1 human epithelial cells, Mol Pharmacol, vol.64, pp.1283-1294, 2003.

V. Gerzanich, X. Peng, F. Wang, G. Wells, and R. Anand, Comparative pharmacology of epibatidine: a potent agonist for neuronal nicotinic acetylcholine receptors, Mol Pharmacol, vol.48, pp.774-782, 1995.

B. Buisson and D. Bertrand, Chronic exposure to nicotine upregulates the human (alpha)4(beta)2 nicotinic acetylcholine receptor function, J Neurosci, vol.21, pp.1819-1829, 2001.

R. L. Papke, Estimation of both the potency and efficacy of (alpha)7 nAChR agonists from single-concentration responses, Life Sci, vol.78, pp.2812-2819, 2006.

X. Peng, M. Katz, V. Gerzanich, R. Anand, and J. Lindstrom, Human (alpha)7 acetylcholine receptor: cloning of the (alpha)7 subunit from the SH-SY5Y cell line and determination of pharmacological properties of native receptors and functional (alpha)7 homomers expressed in Xenopus oocytes, Mol Pharmacol, vol.45, pp.546-554, 1994.

J. E. Rose, A. G. Mukhin, S. J. Lokitz, T. G. Turkington, and J. Herskovic, Kinetics of brain nicotine accumulation in dependent and nondependent smokers assessed with PET and cigarettes containing 11C-nicotine, Proc Natl Acad Sci U S A, vol.107, pp.5190-5195, 2010.

K. G. Paradiso and J. H. Steinbach, Nicotine is highly effective at producing desensitization of rat (alpha)4(beta)2 neuronal nicotinic receptors, J Physiol, vol.553, pp.857-871, 2003.

R. Klink, A. De-kerchove-d'exaerde, M. Zoli, and J. P. Changeux, Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei, J Neurosci, vol.21, pp.1452-1463, 2001.

M. R. Picciotto, N. A. Addy, Y. S. Mineur, and D. H. Brunzell, It is not ''either/or'': activation and desensitization of nicotinic acetylcholine receptors both contribute to behaviors related to nicotine addiction and mood, Prog Neurobiol, vol.84, pp.329-342, 2008.

M. Garzón, V. Ra, G. R. Uhl, M. J. Kuhar, and V. M. Pickel, Cholinergic axon terminals in the ventral tegmental area target a subpopulation of neurons expressing low levels of the dopamine transporter, J Comp Neurol, vol.410, pp.197-210, 1999.

R. Nashmi, C. Xiao, P. Deshpande, S. Mckinney, and S. R. Grady, Chronic nicotine cell specifically upregulates functional (alpha)4* nicotinic receptors: basis for both tolerance in midbrain and enhanced long-term potentiation in perforant path, J Neurosci, vol.27, pp.8202-8218, 2007.

S. Tolu, R. Eddine, F. Marti, V. David, and M. Graupner, Co-activation of VTA DA and GABA neurons mediates nicotine reinforcement, Mol Psychiatry, vol.18, pp.382-393, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01541329

S. W. Johnson and R. A. North, Opioids excite dopamine neurons by hyperpolarization of local interneurons, J Neurosci, vol.12, pp.483-488, 1992.

C. Lüscher and M. A. Ungless, The mechanistic classification of addictive drugs, PLoS Med, vol.3, p.437, 2006.

S. Ikemoto, R. R. Kohl, and W. J. Mcbride, GABA(A) receptor blockade in the anterior ventral tegmental area increases extracellular levels of dopamine in the nucleus accumbens of rats, J Neurochem, vol.69, pp.137-143, 1997.

V. David, T. P. Durkin, and P. Cazala, Self-administration of the GABAA antagonist bicuculline into the ventral tegmental area in mice: dependence on D2 dopaminergic mechanisms, Psychopharmacology (Berl), vol.130, pp.85-90, 1997.

E. Sher, Y. Chen, T. J. Sharples, L. M. Broad, and G. Benedetti, Physiological roles of neuronal nicotinic receptor subtypes: new insights on the nicotinic modulation of neurotransmitter release, synaptic transmission and plasticity, Curr Top Med Chem, vol.4, pp.283-297, 2004.

S. W. Johnson and R. A. North, Two types of neurone in the rat ventral tegmental area and their synaptic inputs, J Physiol, vol.450, pp.455-468, 1992.

M. G. Lacey, N. B. Mercuri, and R. A. North, Two cell types in rat substantia nigra zona compacta distinguished by membrane properties and the actions of dopamine and opioids, J Neurosci, vol.9, pp.1233-1241, 1989.

T. C. Jhou, H. L. Fields, M. G. Baxter, C. B. Saper, and P. C. Holland, The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses, Neuron, vol.61, pp.786-800, 2009.

P. W. Kalivas, L. Churchill, and M. A. Klitenick, GABA and enkephalin projection from the nucleus accumbens and ventral pallidum to the ventral tegmental area, Neuroscience, vol.57, pp.1047-1060, 1993.

S. Erhardt, L. Schwieler, and G. Engberg, Excitatory and inhibitory responses of dopamine neurons in the ventral tegmental area to nicotine, Synapse, vol.43, pp.227-237, 2002.

J. R. Wooltorton, V. I. Pidoplichko, R. S. Broide, and J. A. Dani, Differential desensitization and distribution of nicotinic acetylcholine receptor subtypes in midbrain dopamine areas, J Neurosci, vol.23, pp.3176-3185, 2003.

J. Grenhoff, C. S. Tung, and T. H. Svensson, The excitatory amino acid antagonist kynurenate induces pacemaker-like firing of dopamine neurons in rat ventral tegmental area in vivo, Acta Physiol Scand, vol.134, pp.567-568, 1988.

K. Chergui, P. J. Charlety, H. Akaoka, C. F. Saunier, and J. L. Brunet, Tonic activation of NMDA receptors causes spontaneous burst discharge of rat midbrain dopamine neurons in vivo, Eur J Neurosci, vol.5, pp.137-144, 1993.

A. O. Komendantov, O. G. Komendantova, S. W. Johnson, and C. C. Canavier, A modeling study suggests complementary roles for GABAA and NMDA receptors and the SK channel in regulating the firing pattern in midbrain dopamine neurons, J Neurophysiol, vol.91, pp.346-357, 2004.

M. Gao, Y. Jin, K. Yang, D. Zhang, and R. J. Lukas, Mechanisms involved in systemic nicotine-induced glutamatergic synaptic plasticity on dopamine neurons in the ventral tegmental area, J Neurosci, vol.30, pp.13814-13825, 2010.

M. Wu, A. W. Hrycyshyn, and S. M. Brudzynski, Subpallidal outputs to the nucleus accumbens and the ventral tegmental area: anatomical and electrophysiological studies, Brain Res, vol.740, pp.151-161, 1996.

D. B. Carr and S. R. Sesack, Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons, J Neurosci, vol.20, pp.3864-3873, 2000.

Z. M. Fagen, H. D. Mansvelder, J. R. Keath, and D. S. Mcgehee, Short-and longterm modulation of synaptic inputs to brain reward areas by nicotine, Ann N Y Acad Sci, vol.1003, pp.185-195, 2003.

P. Dayan and Y. Niv, Reinforcement learning: the good, the bad and the ugly, Curr Opin Neurobiol, vol.18, pp.185-196, 2008.

J. N. Reynolds and J. R. Wickens, Dopamine-dependent plasticity of corticostriatal synapses, Neural Netw, vol.15, pp.507-521, 2002.

A. J. Yu and P. Dayan, Uncertainty, neuromodulation, and attention, Neuron, vol.46, pp.681-692, 2005.

E. Lichtenstein, The smoking problem: a behavioral perspective, J Consult Clin Psychol, vol.50, pp.804-819, 1982.

D. Chiara and G. , Drug addiction as dopamine-dependent associative learning disorder, Eur J Pharmacol, vol.375, pp.13-30, 1999.

H. R. Wilson and J. D. Cowan, Excitatory and inhibitory interactions in localized populations of model neurons, Biophys J, vol.12, pp.1-24, 1972.

A. A. Grace and S. P. Onn, Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro, J Neurosci, vol.9, pp.3463-3481, 1989.

N. Champtiaux, C. Gotti, M. Cordero-erausquin, D. J. David, and C. Przybylski, Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice, J neurosci, vol.23, pp.7820-7829, 2003.

J. P. Changeux, . Devillers-thiéry-a, and P. Chemouilli, Acetylcholine receptor: an allosteric protein, Science, vol.225, pp.1335-1345, 1984.

D. Ja and S. Heinemann, Molecular and cellular aspects of nicotine abuse, Neuron, vol.16, pp.905-908, 1996.

L. E. Chavez-noriega, J. H. Crona, M. S. Washburn, A. Urrutia, and K. J. Elliott, Pharmacological characterization of recombinant human neuronal nicotinic acetylcholine receptors h(alpha)2(beta)2, h(alpha)2(beta)4, h(alpha)3(-beta)2, h(alpha)3(beta)4, h(alpha)4(beta)2, h(alpha)4(beta)4 and h(alpha)7 expressed in Xenopus oocytes, J Pharmacol Exp Ther, vol.280, pp.346-356, 1997.

S. R. Grady, R. M. Drenan, S. R. Breining, D. Yohannes, and C. R. Wageman, Structural differences determine the relative selectivity of nicotinic compounds for native (alpha)4(beta)2*-, (alpha)6(beta)2*-, (alpha)3(beta)4*-and (alpha)7-nicotine acetylcholine receptors, Neuropharmacology, vol.58, pp.1054-1066, 2010.

M. J. Christie, S. Bridge, L. B. James, and P. M. Beart, Excitotoxin lesions suggest an aspartatergic projection from rat medial prefrontal cortex to ventral tegmental area, Brain Res, vol.333, pp.169-172, 1985.

S. R. Sesack and V. M. Pickel, Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area, J Comp Neurol, vol.320, pp.145-160, 1992.

Z. Y. Tong, P. G. Overton, and D. Clark, Stimulation of the prefrontal cortex in the rat induces patterns of activity in midbrain dopaminergic neurons which resemble natural burst events, Synapse, vol.22, pp.195-208, 1996.

S. C. Steffensen, A. L. Svingos, V. M. Pickel, and S. J. Henriksen, Electrophysiological characterization of GABAergic neurons in the ventral tegmental area, J Neurosci, vol.18, pp.8003-8015, 1998.

J. R. Clements and S. Grant, Glutamate-like immunoreactivity in neurons of the laterodorsal tegmental and pedunculopontine nuclei in the rat, Neurosci Lett, vol.120, pp.70-73, 1990.

J. Cornwall, J. D. Cooper, and O. T. Phillipson, Afferent and efferent connections of the laterodorsal tegmental nucleus in the rat, Brain Res Bull, vol.25, pp.271-284, 1990.

G. L. Forster and C. D. Blaha, Laterodorsal tegmental stimulation elicits dopamine efflux in the rat nucleus accumbens by activation of acetylcholine and glutamate receptors in the ventral tegmental area, Eur J Neurosci, vol.12, pp.3596-3604, 2000.

V. Gerzanich, R. Anand, and J. Lindstrom, Homomers of (alpha)8 and (alpha)7 subunits of nicotinic receptors exhibit similar channel but contrasting binding site properties, Mol Pharmacol, vol.45, pp.212-220, 1994.