H. Blencowe, S. Cousens, M. Z. Oestergaard, D. Chou, A. Moller et al., Lawn, National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications, The Lancet, vol.379, p.216272, 2012.

J. Huvanandana, C. Thamrin, M. Tracy, M. Hinder, C. Nguyen et al., Advanced analyses of physiological signals in the neonatal intensive care unit, Physiological Measurement, vol.38, p.253, 2017.

J. Werth, L. Atallah, P. Andriessen, X. Long, E. Zwartkruis-pelgrim et al., Unobtrusive sleep state measurements in preterm infantsa review, Sleep Medicine Reviews, vol.32, p.109122, 2017.

L. Curzi-dascalova and M. Mirmiran, Manual of methods for recording and analyzing sleep-wakefulness states in preterm and full-term infant, INSERM, 1996.

H. F. Prechtl, The behavioural states of the newborn infant (a review), vol.76, p.185212, 1974.

H. Als, Program guide: Newborn individualized developmental care and assessment program (NIDCAP): An education and training program for health care professionals, Children's Medical Center Corporation, 2002.

A. Rechtschaen and A. Kales, A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects, 1968.

T. F. Anders, R. N. Emde, and A. H. Parmelee, A manual of standardized terminology, techniques and criteria for scoring of states of sleep and wakefulness in newborn infants, NINDS Neurological Information Network, 1971.

T. F. Anders and A. M. Sostek, The use of time lapse video recording of sleep-wake behavior in human infants, Psychophysiology, vol.13, p.1558, 1976.

P. W. Fuller, W. H. Wenner, and S. Blackburn, Comparison between time-lapse video recordings of behavior and polygraphic state determinations in premature infants, Psychophysiology, vol.15, p.5948, 1978.

A. Piryatinska, G. Terdik, W. A. Woyczynski, K. A. Loparo, M. S. Scher et al., Automated detection of neonate EEG sleep stages, Computer Methods and Programs in Biomedicine, vol.95, p.3146, 2009.

L. Fraiwan, K. Lweesy, N. Khasawneh, M. Fraiwan, H. Wenz et al., Time frequency analysis for automated sleep stage identication in fullterm and preterm neonates, Journal of Medical Systems, vol.35, p.693702, 2011.

A. Dereymaeker, K. Pillay, J. Vervisch, S. Van-huel, G. Naulaers et al., An automated quiet sleep detection approach in preterm infants as a gateway to assess brain maturation, International Journal of Neural Systems, vol.27, p.1750023, 2017.

O. De-wel, M. Lavanga, A. C. Dorado, K. Jansen, A. Dereymaeker et al., Complexity analysis of neonatal EEG using multiscale entropy: applications in brain maturation and sleep stage classication, Entropy, vol.19, p.516, 2017.

A. H. Ansari, O. De-wel, M. Lavanga, A. Caicedo, A. Dereymaeker et al., Quiet sleep detection in preterm infants using deep convolutional neural networks, Journal of Neural Engineering, vol.15, p.66006, 2018.

K. Pillay, A. Dereymaeker, K. Jansen, G. Naulaers, S. Van-huel et al., Automated eeg sleep staging in the term-age baby using a generative modelling approach, Journal of neural engineering, vol.15, p.36004, 2018.

R. M. Harper, V. L. Schechtman, and K. A. Kluge, Machine classication of infant sleep state using cardiorespiratory measures, Electroencephalography and Clinical Neurophysiology, vol.67, p.379387, 1987.

L. Hazelho, J. Han, S. Bambang-oetomo, and P. H. De-with, Behavioral state detection of newborns based on facial expression analysis, International Conference on Advanced Concepts for Intelligent Vision Systems, p.698709, 2009.

S. Cabon, F. Porée, A. Simon, O. Rosec, P. Pladys et al., Video and audio processing in paediatrics: a review, Physiological Measurement, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01998530

O. Wasz-höckert, K. Michelsson, and J. Lind, Twenty-ve years of Scandinavian cry research, Infant Crying, p.83104, 1985.

S. Orlandi, C. Manfredi, L. Bocchi, and M. Scattoni, Automatic newborn cry analysis: A non-invasive tool to help autism early diagnosis, Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, p.29532956, 2012.

M. A. Díaz, C. A. García, L. C. Robles, J. E. Altamirano, and A. V. Mendoza, Automatic infant cry analysis for the identication of qualitative features to help opportune diagnosis, Biomedical Signal Processing and Control, vol.7, p.4349, 2012.

S. Orlandi, L. Bocchi, G. Donzelli, and C. Manfredi, Central blood oxygen saturation vs crying in preterm newborns, Biomedical Signal Processing and Control, vol.7, p.8892, 2012.

S. Orlandi, P. H. Dejonckere, J. Schoentgen, J. Lebacq, N. Rruqja et al., Eective pre-processing of long term noisy audio recordings: An aid to clinical monitoring, Biomedical Signal Processing and Control, vol.8, p.799810, 2013.

S. Orlandi, A. Guzzetta, A. Bandini, V. Belmonti, S. D. Barbagallo et al.,

C. Scattoni and . Manfredi, AVIM -A contactless system for infant data acquisition and analysis: Software architecture and rst results, Biomedical Signal Processing and Control, vol.20, p.8599, 2015.

S. Orlandi, C. A. Garcia, A. Bandini, G. Donzelli, and C. Manfredi, Application of pattern recognition techniques to the classication of full-term and preterm infant cry, Journal of Voice, vol.30, p.656663, 2016.

C. Manfredi, A. Bandini, D. Melino, R. Viellevoye, M. Kalenga et al., Automated detection and classication of basic shapes of newborn cry melody, Biomedical Signal Processing and Control, vol.45, p.174181, 2018.

N. Otsu, A threshold selection method from gray-level histograms, IEEE Transactions on Systems, Man, and Cybernetics, vol.9, p.6266, 1979.
DOI : 10.1109/tsmc.1979.4310076

T. B. Moeslund, A. Hilton, and V. Krüger, A survey of advances in vision-based human motion capture and analysis, Computer Vision and Image Understanding, vol.104, p.90126, 2006.

A. Stahl, C. Schellewald, O. Stavdahl, O. M. Aamo, L. Adde et al., An optical ow-based method to predict infantile cerebral palsy, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.20, p.60514, 2012.
DOI : 10.1109/tnsre.2012.2195030

C. Marcroft, A. Khan, N. D. Embleton, M. Trenell, and T. Plotz, Movement recognition technology as a method of assessing spontaneous general movements in high risk infants, Frontiers in Neurology, vol.5, p.284, 2014.

M. Pediaditis, M. Tsiknakis, and N. Leitgeb, Vision-based motion detection, analysis and recognition of epileptic seizuresa systematic review, Computer Methods and Programs in Biomedicine, vol.108, p.113348, 2012.
DOI : 10.1016/j.cmpb.2012.08.005

S. Okada, Y. Ohno, K. Kato-nishimura, I. Mohri, and M. Taniike, Examination of non-restrictive and non-invasive sleep evaluation technique for children using dierence images, 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, p.34833487, 2008.

A. Al-rahayfeh and M. Faezipour, Eye tracking and head movement detection: A state-of-art survey, IEEE Journal of Translational Engineering in Health and Medicine, vol.1, 2013.

S. P. Johnson, J. A. Slemmer, and D. Amso, Where infants look determines how they see: Eye movements and object perception performance in 3-month-olds, Infancy, vol.6, p.185201, 2004.

S. Hunnius and R. H. Geuze, Developmental changes in visual scanning of dynamic faces and abstract stimuli in infants: A longitudinal study, Infancy, vol.6, p.231255, 2004.

G. Gredeback and C. Hofsten, Infants' evolving representations of object motion during occlusion: A longitudinal study of 6-to 12-month-old infants, Infancy, vol.6, p.165184, 2004.

A. Franklin, M. Pilling, and I. Davies, The nature of infant color categorization: Evidence from eye movements on a target detection task, Journal of Experimental Child Psychology, vol.91, p.227248, 2005.

L. E. Peterson and K. Neighbor, , vol.4, p.1883, 2009.

S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K. Mullers, Proceedings of the 1999 IEEE signal processing society workshop, p.4148, 1999.

V. Vapnik and S. Mukherjee, Support vector method for multivariate density estimation, Advances in neural information processing systems, p.659665, 2000.

L. Breiman, Random forests, Machine Learning, vol.45, p.532, 2001.

S. K. Pal and S. Mitra, Multilayer perceptron, fuzzy sets, classiaction, 1992.
DOI : 10.1109/72.159058

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, vol.12, p.28252830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

A. M. Zoubir and B. Boashash, The bootstrap and its application in signal processing, IEEE signal processing magazine, vol.15, p.5676, 1998.
DOI : 10.1109/79.647043

J. Cohen, A coecient of agreement for nominal scales, Educational and Psychological Measurement, vol.20, p.3746, 1960.

M. G. Kendall, A new measure of rank correlation, Biometrika, vol.30, p.8193, 1938.

M. Scatena, S. Dittoni, and R. Maviglia, An integrated video-analysis software system designed for movement detection and sleep analysis. Validation of a tool for the behavioural study of sleep, Clinical Neurophysiology, vol.123, p.31823, 2012.

L. Cattani, D. Alinovi, G. Ferrari, R. Raheli, E. Pavlidis et al., Monitoring infants by automatic video processing: A unied approach to motion analysis, Computers in Biology and Medicine, vol.80, p.158165, 2017.

M. Van-gastel, B. Balmaekers, S. B. Oetomo, and W. Verkruysse, Near-continuous non-contact cardiac pulse monitoring in a neonatal intensive care unit in near darkness, Optical Diagnostics and Sensing XVIII: Toward Point-of-Care Diagnostics, vol.1050114, p.19, 2018.