N. Mizushima, T. Yoshimori, and Y. Ohsumi, The role of Atg proteins in autophagosome formation, Annu Rev Cell Dev Biol, vol.27, p.21801009, 2011.

S. A. Tooze and T. Yoshimori, The origin of the autophagosomal membrane, Nat Cell Biol, vol.12, issue.9, p.20811355, 2010.

D. W. Hailey, A. S. Rambold, P. Satpute-krishnan, M. K. Sougrat, R. Kim et al., Mitochondria supply membranes for autophagosome biogenesis during starvation, Cell, vol.141, issue.4, p.20478256, 2010.

B. Ravikumar, K. Moreau, L. Jahreiss, C. Puri, and D. C. Rubinsztein, Plasma membrane contributes to the formation of pre-autophagosomal structures, Nat Cell Biol, vol.12, issue.8, p.20639872, 2010.

L. Ge, M. Zhang, and R. Schekman, Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER-Golgi intermediate compartment, Elife, vol.3, p.25432021, 2014.

C. Puri, M. Renna, C. F. Bento, K. Moreau, and D. C. Rubinsztein, Diverse autophagosome membrane sources coalesce in recycling endosomes, Cell, vol.154, issue.6, p.24034251, 2013.

I. G. Ganley, H. Lam-du, J. Wang, X. Ding, S. Chen et al., ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy, J Biol Chem, vol.284, issue.18, p.19258318, 2009.

J. Kim, M. Kundu, B. Viollet, and K. L. Guan, AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1, Nat Cell Biol, vol.13, issue.2, p.21258367, 2011.

M. Zachari and I. G. Ganley, The mammalian ULK1 complex and autophagy initiation, Essays Biochem, vol.61, issue.6, p.29233870, 2017.

R. C. Russell, Y. Tian, H. Yuan, H. W. Park, Y. Y. Chang et al., ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase, Nat Cell Biol, vol.15, issue.7, p.23685627, 2013.

A. Simonsen and S. A. Tooze, Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes, J Cell Biol, vol.186, issue.6, p.19797076, 2009.

T. Noda, K. Matsunaga, N. Taguchi-atarashi, and T. Yoshimori, Regulation of membrane biogenesis in autophagy via PI3P dynamics, Semin Cell Dev Biol, vol.21, issue.7, p.20403452, 2010.

A. Orsi, M. Razi, H. C. Dooley, D. Robinson, A. E. Weston et al., Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy, Mol Biol Cell, vol.23, issue.10, p.22456507, 2012.

M. Mari, J. Griffith, E. Rieter, L. Krishnappa, D. J. Klionsky et al., An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis, J Cell Biol, vol.190, issue.6, p.20855505, 2010.

H. Yamamoto, S. Kakuta, T. M. Watanabe, A. Kitamura, T. Sekito et al., Atg9 vesicles are an important membrane source during early steps of autophagosome formation, J Cell Biol, vol.198, issue.2, p.22826123, 2012.

A. R. Young, E. Y. Chan, X. W. Hu, R. Kochl, S. G. Crawshaw et al., Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes, J Cell Sci, vol.119, p.16940348, 2006.

K. Soreng, M. J. Munson, C. A. Lamb, G. T. Bjorndal, S. Pankiv et al., SNX18 regulates ATG9A trafficking from recycling endosomes by recruiting Dynamin-2, EMBO Rep, vol.19, issue.4, 2018.

Y. Ohsumi and N. Mizushima, Two ubiquitin-like conjugation systems essential for autophagy, Semin Cell Dev Biol, vol.15, issue.2, p.15209383, 2004.

Z. Xie, U. Nair, and D. J. Klionsky, Atg8 controls phagophore expansion during autophagosome formation, Mol Biol Cell, vol.19, issue.8, p.18508918, 2008.

Y. Kabeya, N. Mizushima, T. Ueno, A. Yamamoto, T. Kirisako et al., LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing, EMBO J, vol.19, issue.21, p.11060023, 2000.

V. Rogov, V. Dotsch, T. Johansen, and V. Kirkin, Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy, Mol Cell, vol.53, issue.2, p.24462201, 2014.

N. Nguyen, V. Shteyn, and T. J. Melia, Sensing Membrane Curvature in Macroautophagy, J Mol Biol, vol.429, issue.4, p.28088480, 2017.

N. Gammoh, O. Florey, M. Overholtzer, and X. Jiang, Interaction between FIP200 and ATG16L1 distinguishes ULK1 complex-dependent and -independent autophagy, Nat Struct Mol Biol, vol.20, issue.2, p.23262492, 2013.

Y. Grishchuk, V. Ginet, A. C. Truttmann, P. G. Clarke, and J. Puyal, Beclin 1-independent autophagy contributes to apoptosis in cortical neurons, Autophagy, vol.7, issue.10, p.21646862, 2011.

Y. Nishida, S. Arakawa, K. Fujitani, H. Yamaguchi, T. Mizuta et al., Discovery of Atg5/Atg7-independent alternative macroautophagy, Nature, vol.461, issue.7264, p.19794493, 2009.

M. Ponpuak, M. A. Mandell, T. Kimura, S. Chauhan, C. Cleyrat et al., Curr Opin Cell Biol, vol.35, p.25988755, 2015.

S. B. Kudchodkar and B. Levine, Viruses and autophagy, Rev Med Virol, vol.19, issue.6, p.19750559, 2009.

C. Liang, E. X. Jung, and J. U. , Downregulation of autophagy by herpesvirus Bcl-2 homologs, Autophagy, vol.4, issue.3, p.17993780, 2008.

A. Orvedahl, S. Macpherson, R. Sumpter, Z. Talloczy, Z. Zou et al., Autophagy protects against Sindbis virus infection of the central nervous system, Cell Host Microbe, vol.7, issue.2, p.20159618, 2010.

S. Barth, D. Glick, and K. F. Macleod, Autophagy: assays and artifacts, J Pathol, vol.221, issue.2, p.20225337, 2010.

E. Y. Chan, A. Longatti, N. C. Mcknight, and S. A. Tooze, Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism, Mol Cell Biol, vol.29, issue.1, p.18936157, 2009.

E. J. Lee and C. Tournier, The requirement of uncoordinated 51-like kinase 1 (ULK1) and ULK2 in the regulation of autophagy, Autophagy, vol.7, issue.7, p.21460635, 2011.

E. Delorme-axford, E. Abernathy, N. J. Lennemann, A. Bernard, A. Ariosa et al., The Exoribonuclease Xrn1 Is a Post-Transcriptional Negative Regulator of Autophagy, Autophagy, vol.2018, pp.1-47

S. Koike and N. Nagata, A Transgenic Mouse Model of Poliomyelitis, Methods Mol Biol, vol.1387, p.26983733, 2016.

T. Hara, K. Nakamura, M. Matsui, A. Yamamoto, Y. Nakahara et al., Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice, Nature, vol.441, issue.7095, p.16625204, 2006.

A. Williams, S. Sarkar, P. Cuddon, E. K. Ttofi, S. Saiki et al., Novel targets for Huntington's disease in an mTOR-independent autophagy pathway, Nat Chem Biol, vol.4, issue.5, p.18391949, 2008.

L. Zhang, J. Yu, H. Pan, P. Hu, Y. Hao et al., Small molecule regulators of autophagy identified by an image-based high-throughput screen, Proc Natl Acad Sci, vol.104, issue.48, p.18024584, 2007.

G. Martrus, A. Niehrs, R. Cornelis, A. Rechtien, W. Garcia-beltran et al., Kinetics of HIV-1 Latency Reversal Quantified on the Single-Cell Level Using a Novel Flow-Based Technique, J Virol, vol.90, issue.20, p.27466424, 2016.

N. Van-buuren, T. L. Tellinghuisen, C. D. Richardson, and K. Kirkegaard, Transmission genetics of drug-resistant hepatitis C virus, Elife, vol.7, 2018.

H. I. Mack, B. Zheng, J. M. Asara, and S. M. Thomas, AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization, Autophagy, vol.8, issue.8, p.22932492, 2012.

L. Shang and X. Wang, AMPK and mTOR coordinate the regulation of Ulk1 and mammalian autophagy initiation, Autophagy, vol.7, issue.8, p.21521945, 2011.

S. E. Crawford, J. M. Hyser, B. Utama, and M. K. Estes, Autophagy hijacked through viroporin-activated calcium/ calmodulin-dependent kinase kinase-beta signaling is required for rotavirus replication, Proc Natl Acad Sci U S A, vol.109, issue.50, p.23184977, 2012.

S. Wullschleger, R. Loewith, and M. N. Hall, TOR signaling in growth and metabolism, Cell, vol.124, issue.3, p.16469695, 2006.

D. F. Egan, M. G. Chun, M. Vamos, H. Zou, J. Rong et al., Small Molecule Inhibition of the Autophagy Kinase ULK1 and Identification of ULK1 Substrates, Mol Cell, vol.59, issue.2, p.26118643, 2015.

B. Ronan, O. Flamand, L. Vescovi, C. Dureuil, L. Durand et al., A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy, Nat Chem Biol, vol.10, issue.12, p.25326666, 2014.

G. A. Belov, V. Nair, B. T. Hansen, F. H. Hoyt, E. R. Fischer et al., Complex dynamic development of poliovirus membranous replication complexes, J Virol, vol.86, issue.1, p.22072780, 2012.

S. Welsch, S. Miller, I. Romero-brey, A. Merz, C. K. Bleck et al., Composition and three-dimensional architecture of the dengue virus replication and assembly sites, Cell Host Microbe, vol.5, issue.4, p.19380115, 2009.

E. Itakura and N. Mizushima, Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins, Autophagy, vol.6, issue.6, p.20639694, 2010.

I. Tanida, T. Yamaji, T. Ueno, S. Ishiura, E. Kominami et al., Consideration about negative controls for LC3 and expression vectors for four colored fluorescent protein-LC3 negative controls, Autophagy, vol.4, issue.1, p.18000393, 2008.

R. Kochl, X. W. Hu, E. Y. Chan, and S. A. Tooze, Microtubules facilitate autophagosome formation and fusion of autophagosomes with endosomes, Traffic, vol.7, issue.2, p.16420522, 2006.

Y. Ichimura, T. Kirisako, T. Takao, Y. Satomi, Y. Shimonishi et al., A ubiquitin-like system mediates protein lipidation, Nature, vol.408, issue.6811, p.11100732, 2000.

I. Tanida, T. Ueno, and E. Kominami, Human light chain 3/MAP1LC3B is cleaved at its carboxyl-terminal Met121 to expose Gly120 for lipidation and targeting to autophagosomal membranes, J Biol Chem, vol.279, issue.46, p.15355958, 2004.

K. Satoo, N. N. Noda, H. Kumeta, Y. Fujioka, N. Mizushima et al., The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy, EMBO J, vol.28, issue.9, p.19322194, 2009.

T. Hanada, N. N. Noda, Y. Satomi, Y. Ichimura, Y. Fujioka et al., The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy, J Biol Chem, vol.282, issue.52, p.17986448, 2007.

E. Shvets, E. Fass, R. Scherz-shouval, and Z. Elazar, The N-terminus and Phe52 residue of LC3 recruit p62/ SQSTM1 into autophagosomes, J Cell Sci, vol.121, p.18653543, 2008.

E. Shvets, A. Abada, H. Weidberg, and Z. Elazar, Dissecting the involvement of LC3B and GATE-16 in p62 recruitment into autophagosomes, Autophagy, vol.7, issue.7, p.21460636, 2011.

S. Pankiv, E. A. Alemu, A. Brech, J. A. Bruun, T. Lamark et al., FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport, J Cell Biol, vol.188, issue.2, p.20100911, 2010.

T. Kirisako, Y. Ichimura, H. Okada, Y. Kabeya, N. Mizushima et al., The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway, J Cell Biol, vol.151, issue.2, p.11038174, 2000.

Y. Ichimura, Y. Imamura, K. Emoto, M. Umeda, T. Noda et al., In vivo and in vitro reconstitution of Atg8 conjugation essential for autophagy, J Biol Chem, vol.279, issue.39, p.15277523, 2004.

M. P. Taylor and K. Kirkegaard, Modification of cellular autophagy protein LC3 by poliovirus, J Virol, vol.81, issue.22, p.17804493, 2007.

Y. Ichimura, T. Kumanomidou, Y. S. Sou, T. Mizushima, J. Ezaki et al., Structural basis for sorting mechanism of p62 in selective autophagy, J Biol Chem, vol.283, issue.33, p.18524774, 2008.

E. A. Alemu, T. Lamark, K. M. Torgersen, A. B. Birgisdottir, K. B. Larsen et al., ATG8 family proteins act as scaffolds for assembly of the ULK complex: sequence requirements for LC3-interacting region (LIR) motifs, J Biol Chem, vol.287, issue.47, p.23043107, 2012.

B. D. Lindenbach and C. M. Rice, Genetic interaction of flavivirus nonstructural proteins NS1 and NS4A as a determinant of replicase function, J Virol, vol.73, issue.6, p.10233920, 1999.

J. Zou, T. Lee-le, Q. Y. Wang, X. Xie, S. Lu et al., Mapping the Interactions between the NS4B and NS3 proteins of dengue virus, J Virol, vol.89, issue.7, p.25589636, 2015.

P. Codogno, M. Mehrpour, and T. Proikas-cezanne, Canonical and non-canonical autophagy: variations on a common theme of self-eating?, Nat Rev Mol Cell Biol, vol.13, issue.1, p.22166994, 2011.

H. Cheong, T. Lindsten, J. Wu, C. Lu, and C. B. Thompson, Ammonia-induced autophagy is independent of ULK1/ULK2 kinases, Proc Natl Acad Sci, vol.108, issue.27, p.21690395, 2011.

S. Tian, J. Lin, J. Zhou, J. Wang, X. Li et al., Beclin 1-independent autophagy induced by a Bcl-XL/Bcl-2 targeting compound, Z18. Autophagy, vol.6, issue.8, p.20818185, 2010.

D. M. Smith, S. Patel, F. Raffoul, E. Haller, G. B. Mills et al., Arsenic trioxide induces a beclin-1-independent autophagic pathway via modulation of SnoN/SkiL expression in ovarian carcinoma cells, Cell Death Differ, vol.17, issue.12, p.20508647, 2010.

C. Grose and D. J. Klionsky, Alternative autophagy, brefeldin A and viral trafficking pathways, Autophagy, vol.12, issue.9, p.27439673, 2016.

F. Reggiori, I. Monastyrska, M. H. Verheije, T. Cali, M. Ulasli et al., Coronaviruses Hijack the LC3-I-positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication, Cell Host Microbe, vol.7, issue.6, p.20542253, 2010.

I. Monastyrska, M. Ulasli, P. J. Rottier, J. L. Guan, F. Reggiori et al., An autophagy-independent role for LC3 in equine arteritis virus replication, Autophagy, vol.9, issue.2, p.23182945, 2013.

M. Sharma, S. Bhattacharyya, M. Nain, M. Kaur, V. Sood et al., Japanese encephalitis virus replication is negatively regulated by autophagy and occurs on LC3-I-and EDEM1-containing membranes, Autophagy, vol.10, issue.9, p.25046112, 2014.

T. Cali, C. Galli, S. Olivari, and M. Molinari, Segregation and rapid turnover of EDEM1 by an autophagy-like mechanism modulates standard ERAD and folding activities, Biochem Biophys Res Commun, vol.371, issue.3, p.18452703, 2008.

M. Cemma, S. Grinstein, and J. H. Brumell, Autophagy proteins are not universally required for phagosome maturation, Autophagy, vol.12, issue.9, p.27310610, 2016.

R. Beale, H. Wise, A. Stuart, B. J. Ravenhill, P. Digard et al., A LC3-interacting motif in the influenza A virus M2 protein is required to subvert autophagy and maintain virion stability, Cell Host Microbe, vol.15, issue.2, p.24528869, 2014.

D. Egger, N. Teterina, E. Ehrenfeld, and K. Bienz, Formation of the poliovirus replication complex requires coupled viral translation, vesicle production, and viral RNA synthesis, J Virol, vol.74, issue.14, p.10864671, 2000.

T. Pfister, L. Pasamontes, M. Troxler, D. Egger, and K. Bienz, Immunocytochemical localization of capsidrelated particles in subcellular fractions of poliovirus-infected cells, Virology, vol.188, issue.2, p.1316678, 1992.

C. Munz, The Autophagic Machinery in Viral Exocytosis, Front Microbiol, vol.8, p.28270807, 2017.

R. Manjithaya, C. Anjard, W. F. Loomis, and S. Subramani, Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation, J Cell Biol, vol.188, issue.4, p.20156962, 2010.

J. M. Duran, C. Anjard, C. Stefan, W. F. Loomis, and V. Malhotra, Unconventional secretion of Acb1 is mediated by autophagosomes, J Cell Biol, vol.188, issue.4, p.20156967, 2010.

C. Bruns, J. M. Mccaffery, A. J. Curwin, J. M. Duran, and V. Malhotra, Biogenesis of a novel compartment for autophagosome-mediated unconventional protein secretion, J Cell Biol, vol.195, issue.6, p.22144692, 2011.

M. Zhang, S. J. Kenny, L. Ge, K. Xu, and R. Schekman, Translocation of interleukin-1beta into a vesicle intermediate in autophagy-mediated secretion, Elife, vol.4, 2015.

H. Farhan, M. Kundu, and S. Ferro-novick, The link between autophagy and secretion: a story of multitasking proteins, Mol Biol Cell, vol.28, issue.9, p.28468940, 2017.

Z. Feng, L. Hensley, K. L. Mcknight, F. Hu, V. Madden et al., A pathogenic picornavirus acquires an envelope by hijacking cellular membranes, Nature, vol.496, issue.7445, p.23542590, 2013.

A. L. Rice, L. Sacco, A. Hyder, and R. E. Black, Malnutrition as an underlying cause of childhood deaths associated with infectious diseases in developing countries, Bull World Health Organ, vol.78, issue.10, p.11100616, 2000.

V. R. Racaniello and D. Baltimore, Cloned poliovirus complementary DNA is infectious in mammalian cells, Science, vol.214, issue.4523, p.6272391, 1981.

F. A. Ran, P. D. Hsu, J. Wright, V. Agarwala, D. A. Scott et al., Genome engineering using the CRISPRCas9 system, Nat Protoc, vol.8, issue.11, p.24157548, 2013.

C. D. Marceau, A. S. Puschnik, K. Majzoub, Y. S. Ooi, S. M. Brewer et al., Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens, Nature, vol.535, issue.7610, p.27383987, 2016.