G. Tosini and M. Menaker, Circadian rhythms in cultured mammalian retina, Science, vol.272, p.8602533, 1996.
DOI : 10.1126/science.272.5260.419

M. Felder-schmittbuhl, H. Calligaro, and O. Dkhissi-benyahya, The retinal clock in mammals: role in health and disease, ChronoPhysiology Ther, vol.7, pp.33-45, 2017.

G. Tosini and M. Menaker, The clock in the mouse retina: Melatonin synthesis and photoreceptor degeneration, Brain Res, vol.789, p.9573370, 1998.

S. E. Doyle, W. E. Mcivor, and M. Menaker, Circadian rhythmicity in dopamine content of mammalian retina: Role of the photoreceptors, J Neurochem, vol.83, p.12358745, 2002.

M. M. Lavail, Rod outer segment disk shedding in rat retina: relationship to cyclic lighting. Science (80-), 0194.

J. C. Besharse, J. G. Hollyfield, and M. E. Rayborn, Photoreceptor outer segments: accelerated membrane renewal in rods after exposure to light, Science, vol.196, p.300504, 1977.

M. S. Grace, L. M. Wang, G. E. Pickard, J. C. Besharse, and M. Menaker, The tau mutation shortens the period of rhythmic photoreceptor outer segment disk shedding in the hamster, Brain Res, vol.735, p.8905173, 1996.

C. Bobu and D. Hicks, Regulation of retinal photoreceptor phagocytosis in a diurnal mammal by circadian clocks and ambient lighting, Invest Ophthalmol Vis Sci, vol.50, p.19234351, 2009.

M. E. Pierce, H. Sheshberadaran, Z. Zhe, L. E. Fox, M. L. Applebury et al., Circadian regulation of lodopsin gene expression in embryonic photoreceptors in retinal cell culture, Neuron, vol.10, p.8476610, 1993.

M. Von-schantz, R. J. Lucas, and R. G. Foster, Circadian oscillation of photopigment transcript levels in the mouse retina, Mol Brain Res, vol.72, p.10521605, 1999.

C. P. Ribelayga, Y. Cao, and S. C. Mangel, The Circadian Clock in the Retina Controls Rod-Cone Coupling, Neuron, vol.59, p.18786362, 2008.

N. G. Jin and C. P. Ribelayga, Direct Evidence for Daily Plasticity of Electrical Coupling between Rod Photoreceptors in the Mammalian Retina, J Neurosci, vol.36, p.26740659, 2016.

N. G. Jin, A. Z. Chuang, P. J. Masson, and C. P. Ribelayga, Rod electrical coupling is controlled by a circadian clock and dopamine in mouse retina, J Physiol. Wiley-Blackwell, vol.593, pp.1597-631, 2015.

K. Storch, C. Paz, J. Signorovitch, E. Raviola, B. Pawlyk et al., Intrinsic Circadian Clock of the Mammalian Retina: Importance for Retinal Processing of Visual Information, Cell. NIH Public Access, vol.130, pp.730-741, 2007.

G. Ruan, D. Zhang, T. Zhou, S. Yamazaki, and D. G. Mcmahon, Circadian organization of the mammalian retina, Proc Natl Acad Sci, vol.103, p.16766660, 2006.

G. Tosini, A. J. Davidson, C. Fukuhara, M. Kasamatsu, and O. Castanon-cervantes, Localization of a circadian clock in mammalian photoreceptors, FASEB J, vol.21, p.17621597, 2007.

D. Zhang, M. A. Belenky, P. J. Sollars, G. E. Pickard, and D. G. Mcmahon, Melanopsin mediates retrograde visual signaling in the retina, PLoS ONE, vol.7, p.22880066, 2012.

S. Panda, I. Provencio, D. C. Tu, S. S. Pires, M. D. Rollag et al., Melanopsin is required for nonimage-forming photic responses in blind mice, Science, vol.301, p.12829787, 2003.

R. J. Lucas, S. Hattar, M. Takao, D. M. Berson, R. G. Foster et al., Diminished Pupillary Light Reflex at High Irradiances in Melanopsin-Knockout Mice, Science, vol.299, p.12522249, 2003.

S. Hattar, R. J. Lucas, N. Mrosovsky, S. Thompson, R. H. Douglas et al., Melanopsin and rodcone photoreceptive systems account for all major accessory visual functions in mice, Nature, vol.424, p.12808468, 2003.

A. D. Güler, J. L. Ecker, G. S. Lall, S. Haq, C. M. Altimus et al., Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision, Nature, vol.453, p.18432195, 2008.

A. Dollet, U. Albrecht, H. M. Cooper, and O. Dkhissi-benyahya, Cones are required for normal temporal responses to light of phase shifts and clock gene expression, Chronobiol Int, vol.27, p.20560710, 2010.

G. Ruan, G. C. Allen, S. Yamazaki, and D. G. Mcmahon, An autonomous circadian clock in the inner mouse retina regulated by dopamine and GABA, PLoS Biol, vol.6, p.18959477, 2008.

E. D. Buhr and R. N. Van-gelder, Local photic entrainment of the retinal circadian oscillator in the absence of rods, cones, and melanopsin, Proc Natl Acad Sci U S A, vol.111, p.24843129, 2014.

E. D. Buhr, W. Yue, X. Ren, Z. Jiang, H. R. Liao et al., Neuropsin (OPN5)-mediated photoentrainment of local circadian oscillators in mammalian retina and cornea, Proc Natl Acad Sci, vol.112, pp.2-7, 2015.

K. Y. Wong, . Dunn-f-a, D. M. Graham, and D. M. Berson, Synaptic influences on rat ganglion-cell photoreceptors, J Physiol, vol.582, p.17510182, 2007.

H. R. Joo, B. B. Peterson, D. M. Dacey, S. Hattar, and S. Chen, Recurrent axon collaterals of intrinsically photosensitive retinal ganglion cells, Vis Neurosci. NIH Public Access, vol.30, pp.175-82, 2013.

A. N. Reifler, A. P. Chervenak, M. E. Dolikian, B. A. Benenati, B. Y. Li et al., All Spiking, Sustained ON Displaced Amacrine Cells Receive Gap-Junction Input from Melanopsin Ganglion Cells, Curr Biol. Elsevier Ltd, vol.25, pp.2763-2773, 2015.

C. L. Prigge, P. Yeh, N. Liou, C. Lee, S. You et al., M1 ipRGCs Influence Visual Function through Retrograde Signaling in the Retina, J Neurosci, vol.36, p.27383593, 2016.

O. Dkhissi-benyahya, C. Coutanson, K. Knoblauch, H. Lahouaoui, V. Leviel et al., The absence of melanopsin alters retinal clock function and dopamine regulation by light, Cell Mol Life Sci, vol.70, p.23604021, 2013.

D. Zhang, K. Y. Wong, P. J. Sollars, D. M. Berson, G. E. Pickard et al., Intraretinal signaling by ganglion cell photoreceptors to dopaminergic amacrine neurons, Proc Natl Acad Sci U S A, vol.105, p.18779590, 2008.

I. Yujnovsky, J. Hirayama, M. Doi, E. Borrelli, and P. Sassone-corsi, Signaling mediated by the dopamine D2 receptor potentiates circadian regulation by CLOCK:BMAL1, Proc Natl Acad Sci, vol.103, p.16606840, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00188235

P. Witkovsky, Dopamine and retinal function, Doc Ophthalmol, vol.108, p.15104164, 2004.
DOI : 10.1023/b:doop.0000019487.88486.0a

URL : https://zenodo.org/record/891239/files/article.pdf

G. M. Cahill and J. C. Besharse, Resetting the circadian clock in cultured Xenopus eyecups: regulation of retinal melatonin rhythms by light and D2 dopamine receptors, J Neurosci, vol.11, p.1682423, 1991.

B. M. Steenhard and J. C. Besharse, Phase shifting the retinal circadian clock: xPer2 mRNA induction by light and dopamine, J Neurosci, vol.20, pp.8572-8579, 2000.

E. E. Tarttelin, J. Bellingham, M. W. Hankins, R. G. Foster, and R. J. Lucas, Neuropsin (Opn5): A novel opsin identified in mammalian neural tissue, FEBS Lett, vol.554, p.14623103, 2003.

D. Kojima, S. Mori, M. Torii, A. Wada, R. Morishita et al., UV-Sensitive Photoreceptor Protein OPN5 in Humans and Mice, PLoS ONE, vol.6, p.22043319, 2011.
DOI : 10.1371/journal.pone.0026388

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0026388&type=printable

T. Yamashita, H. Ohuchi, S. Tomonari, K. Ikeda, K. Sakai et al., Opn5 is a UV-sensitive bistable pigment that couples with Gi subtype of G protein, Proc Natl Acad Sci U S A, vol.107, p.21135214, 2010.

T. Yamashita, K. Ono, H. Ohuchi, A. Yumoto, H. Gotoh et al., Evolution of mammalian Opn5 as a specialized UV-absorbing pigment by a single amino acid mutation, J Biol Chem, vol.289, p.24403072, 2014.

T. Yamashita, H. Ohuchi, S. Tomonari, K. Ikeda, K. Sakai et al., Opn5 is a UV-sensitive bistable pigment that couples with Gi subtype of G protein, Proc Natl Acad Sci U S A, vol.107, p.21135214, 2010.

K. Haltaufderhyde, R. N. Ozdeslik, N. L. Wicks, J. A. Najera, and E. Oancea, Opsin expression in human epidermal skin, Photochem Photobiol, vol.91, p.25267311, 2015.

V. I. Govardovskii, N. Fyhrquist, T. Reuter, D. G. Kuzmin, and K. Donner, In search of the visual pigment template, Vis Neurosci, vol.17, p.11016572, 2000.

S. Hughes, J. Rodgers, D. Hickey, R. G. Foster, S. N. Peirson et al., Characterisation of light responses in the retina of mice lacking principle components of rod, cone and melanopsin phototransduction signalling pathways, Sci Rep, vol.6, p.27301998, 2016.

D. C. Buonfiglio, A. Malan, C. Sandu, C. Jaeger, J. Cipolla-neto et al., Rat retina shows robust circadian expression of clock and clock output genes in explant culture, Mol Vis, vol.20, p.24940028, 2014.

C. Jaeger, C. Sandu, A. Malan, K. Mellac, D. Hicks et al., Circadian organization of the rodent retina involves strongly coupled, layer-specific oscillators, FASEB J, vol.29, p.25573753, 2015.

K. Baba, A. Sengupta, M. Tosini, S. Contreras-alcantara, and G. Tosini, Circadian regulation of the PERIOD 2 :: LUCIFERASE bioluminescence rhythm in the mouse retinal pigment epithelium-choroid, Mol Vis, vol.16, p.21151601, 2010.

J. S. Takahashi, P. J. Decoursey, L. Bauman, and M. Menaker, Spectral sensitivity of a novel photoreceptive system mediating entrainment of mammalian circadian rhythms, Nature, vol.308, p.6700721, 1984.

D. E. Nelson, J. S. Takahashi, and I. Zucker, Sensitivity in a visual pathway for circadian entrainment in the hamster (Mesocricetus auratus), JPhysiol, vol.439, pp.115-145, 1991.

O. Dkhissi-benyahya, B. Sicard, and H. M. Cooper, Effects of irradiance and stimulus duration on early gene expression (Fos) in the suprachiasmatic nucleus: temporal summation and reciprocity, J Neurosci, vol.20, p.11027243, 2000.
URL : https://hal.archives-ouvertes.fr/inserm-00131432

L. Muscat and L. P. Morin, Binocular Contributions to the Responsiveness and Integrative Capacity of the Circadian Rhythm System to Light, J Biol Rhythms. Sage PublicationsSage CA, vol.20, pp.513-525, 2005.

R. J. Lucas, R. H. Douglas, and R. G. Foster, Characterization of an ocular photopigment capable of driving pupillary constriction in mice, Nat Neurosci, vol.4, p.11369943, 2001.

S. N. Peirson, S. Thompson, M. W. Hankins, and R. G. Foster, Mammalian photoentrainment: Results, methods, and approaches, Methods Enzymol, vol.393, p.15817320, 2005.

M. S. Freedman, R. J. Lucas, B. Soni, V. Schantz, M. Muñoz et al., Regulation of Mammalian Circadian Behavior by Non-rod, Non-cone, Ocular Photoreceptors, Science, vol.284, p.10205061, 1999.

M. P. Butler and R. Silver, Divergent photic thresholds in the non-image-forming visual system: entrainment, masking and pupillary light reflex, Proc R Soc B Biol Sci, vol.278, pp.745-750, 2011.

O. Dkhissi-benyahya, C. Gronfier, D. Vanssay, W. Flamant, F. Cooper et al., Modeling the Role of MidWavelength Cones in Circadian Responses to Light, Neuron, vol.53, p.17329208, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00135926

R. A. Hut, M. Oklejewicz, C. Rieux, and H. M. Cooper, Photic sensitivity ranges of hamster pupillary and circadian phase responses do not overlap, J Biol Rhythms, vol.23, p.18258756, 2008.

L. Ng, J. B. Hurley, B. Dierks, M. Srinivas, C. Saltó et al., A thyroid hormone receptor that is required for the development of green cone photoreceptors, Nat Genet, vol.27, p.11138006, 2001.

A. Swaroop, J. Z. Xu, H. Pawar, A. Jackson, C. Skolnick et al., A conserved retina-specific gene encodes a basic motif/leucine zipper domain, Proc Natl Acad Sci U S A. National Academy of Sciences, vol.89, pp.266-70, 1992.

A. J. Mears, M. Kondo, P. K. Swain, Y. Takada, R. A. Bush et al., Nrl is required for rod photoreceptor development, Nat Genet, vol.29, p.11694879, 2001.

A. Rehemtulla, R. Warwar, R. Kumar, J. X. Zack, D. J. Swaroop et al., The basic motif-leucine zipper transcription factor Nrl can positively regulate rhodopsin gene expression, Proc Natl Acad Sci U S A. National Academy of Sciences, vol.93, pp.191-196, 1996.

E. Strettoi, A. J. Mears, and A. Swaroop, Recruitment of the rod pathway by cones in the absence of rods, J Neurosci, vol.24, p.15329405, 2004.

L. L. Daniele, C. Lillo, A. L. Lyubarsky, S. S. Nikonov, N. Philp et al., Cone-like morphological, molecular, and electrophysiological features of the photoreceptors of the Nrl knockout mouse, Invest Ophthalmol Vis Sci, vol.46, p.15914637, 2005.

S. S. Nikonov, L. L. Daniele, X. Zhu, C. M. Craft, A. Swaroop et al., Photoreceptors of Nrl -/-mice coexpress functional S-and M-cone opsins having distinct inactivation mechanisms, J Gen Physiol, vol.125, p.15738050, 2005.

G. S. Lall, V. L. Revell, H. Momiji, A. Enezi, J. Altimus et al., Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance, Neuron, vol.66, pp.417-428, 2010.

C. M. Altimus, A. D. Güler, N. M. Alam, A. C. Arman, G. T. Prusky et al., Rod photoreceptors drive circadian photoentrainment across a wide range of light intensities, Nat Neurosci. Nature Publishing Group, vol.13, pp.1107-1119, 2010.

X. Zhao, K. Y. Wong, and D. Zhang, Mapping physiological inputs from multiple photoreceptor systems to dopaminergic amacrine cells in the mouse retina, Sci Rep. Springer US, vol.7, p.7920, 2017.

K. R. Boff, L. Kaufman, and J. P. Thomas, Handbook of Perception and Human Performance, 1986.

D. G. Pitts, Ocular Effects of Radiant Energy. Environmental Vision, pp.151-220, 1993.

J. J. Hunter, J. I. Morgan, W. H. Merigan, D. H. Sliney, J. R. Sparrow et al., The susceptibility of the retina to photochemical damage from visible light, Prog Retin Eye Res. NIH Public Access, vol.31, pp.28-42, 2012.

L. S. Mure, H. D. Le, G. Benegiamo, M. W. Chang, L. Rios et al., Diurnal transcriptome atlas of a primate across major neural and peripheral tissues, Science, vol.359, p.318, 2018.

K. Baba and G. Tosini, Aging Alters Circadian Rhythms in the Mouse Eye, J Biol Rhythms, p.29940798, 2018.

K. Baba, J. P. Debruyne, and G. Tosini, Dopamine 2 Receptor Activation Entrains Circadian Clocks in Mouse Retinal Pigment Epithelium, Sci Rep, vol.7, pp.1-9, 2017.

J. J. Kaylor, T. Xu, N. T. Ingram, A. Tsan, H. Hakobyan et al., Blue light regenerates functional visual pigments in mammals through a retinyl-phospholipid intermediate, Nat Commun. Springer US, vol.8, pp.1-9, 2017.

C. Sandu, D. Hicks, and M. Felder-schmittbuhl, Rat photoreceptor circadian oscillator strongly relies on lighting conditions, Eur J Neurosci, vol.34, p.21771113, 2011.

E. A. Boettner and J. R. Wolter, Transmission of the Ocular Media, Invest Ophthalmol Vis Sci, vol.1, pp.776-783, 1962.

R. P. Najjar, P. Teikari, P. Cornut, K. Knoblauch, H. M. Cooper et al., Heterochromatic Flicker Photometry for Objective Lens Density Quantification, Invest Ophthalmol Vis Sci, vol.57, p.26968736, 2016.

W. Ambach, M. Blumthaler, T. Schöpf, E. Ambach, F. Katzgraber et al., Spectral transmission of the optical media of the human eye with respect to keratitis and cataract formation, Doc Ophthalmol, vol.88, p.7781484, 1994.

J. Dillon, L. Zheng, J. C. Merriam, and E. R. Gaillard, Transmission spectra of light to the mammalian retina, Photochem Photobiol, vol.71, p.10687398, 2000.

B. Lei and G. Yao, Spectral attenuation of the mouse, rat, pig and human lenses from wavelengths 360 nm to 1020 nm, Exp Eye Res, vol.83, p.16682025, 2006.

L. Kessel, J. H. Lundeman, K. Herbst, T. V. Andersen, and M. Larsen, Age-related changes in the transmission properties of the human lens and their relevance to circadian entrainment, J Cataract Refract Surg. ASCRS and ESCRS, vol.36, pp.308-312, 2010.

R. H. Douglas and G. Jeffery, The spectral transmission of ocular media suggests ultraviolet sensitivity is widespread among mammals, Proc R Soc B Biol Sci, p.281, 2014.

S. Yoo, S. Yamazaki, P. L. Lowrey, K. Shimomura, C. H. Ko et al., PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues, Proc Natl Acad Sci U S A, vol.101, p.14963227, 2004.

K. Gauthier, O. Chassande, M. Plateroti, J. P. Roux, C. Legrand et al., Different functions for the thyroid hormone receptors TRalpha and TRbeta in the control of thyroid hormone production and postnatal development, Embo J. European Molecular Biology Organization, vol.18, pp.623-631, 1999.

J. E. Roger, K. Ranganath, L. Zhao, R. I. Cojocaru, M. Brooks et al., Preservation of cone photoreceptors after a rapid yet transient degeneration and remodeling in cone-only Nrl-/-mouse retina, J Neurosci, vol.32, p.22238088, 2012.

K. I. Naka and W. A. Rushton, S-potentials from luminosity units in the retina of fish (Cyprinidae), J Physiol, vol.185, p.5918060, 1966.

S. Daan and C. S. Pittendrigh, A functional analysis of circadian pacemakers in nocturnal rodents. IV. Entrainment: Pacemaker as clock, J Comp Neurol, vol.106, pp.267-290, 1976.