A. Feklístov, B. D. Sharon, S. A. Darst, and C. A. Gross, Bacterial sigma factors: a historical, structural, and genomic perspective, Annu. Rev. Microbiol, vol.68, pp.357-376, 2014.

S. Borukhov and E. Nudler, RNA polymerase: the vehicle of transcription, Trends Microbiol, vol.16, pp.126-134, 2008.

S. Rodrigue, R. Provvedi, P. Jacques, L. Gaudreau, and R. Manganelli, The sigma factors of Mycobacterium tuberculosis, FEMS Microbiol. Rev, vol.30, pp.926-941, 2006.

T. M. Gruber and C. A. Gross, Multiple sigma subunits and the partitioning of bacterial transcription space, Annu. Rev. Microbiol, vol.57, pp.441-466, 2003.

M. C. Graves and J. C. Rabinowitz, In vivo and in vitro transcription of the Clostridium pasteurianum ferredoxin gene. Evidence for "extended" promoter elements in gram-positive organisms, J. Biol. Chem, vol.261, pp.11409-11415, 1986.

M. I. Voskuil and G. H. Chambliss, The ?16 region of Bacillus subtilis and other gram-positive bacterial promoters, Nucleic Acids Res, vol.26, pp.3584-3590, 1998.

J. E. Mitchell, D. Zheng, S. J. Busby, and S. D. Minchin, Identification and analysis of 'extended ?10 promoters in Escherichia coli, Nucleic Acids Res, vol.31, pp.4689-4695, 2003.

K. A. Barne, J. A. Bown, S. J. Busby, and S. D. Minchin, Region 2.5 of the Escherichia coli RNA polymerase sigma70 subunit is responsible for the recognition of the 'extended-10 motif at promoters, EMBO J, vol.16, pp.4034-4040, 1997.

A. Kumar, R. A. Malloch, N. Fujita, D. A. Smillie, A. Ishihama et al., The minus 35-recognition region of Escherichia coli sigma 70 is inessential for initiation of transcription at an "extended minus 10" promoter, J. Mol. Biol, vol.232, pp.406-418, 1993.

J. D. Helmann, Compilation and analysis of Bacillus subtilis sigma A-dependent promoter sequences: evidence for extended contact between RNA polymerase and upstream promoter DNA, Nucleic Acids Res, vol.23, pp.2351-2360, 1995.

H. Buc and W. R. Mcclure, Kinetics of open complex formation between Escherichia coli RNA polymerase and the lac UV5 promoter. Evidence for a sequential mechanism involving three steps, Biochemistry, vol.24, pp.2712-2723, 1985.

A. Rogozina, E. Zaychikov, M. Buckle, H. Heumann, and B. Sclavi, DNA melting by RNA polymerase at the T7A1 promoter precedes the rate-limiting step at 37 ? C and results in the accumulation of an off-pathway intermediate, Nucleic Acids Res, vol.37, pp.5390-5404, 2009.

R. M. Saecker, M. T. Record, and P. L. Dehaseth, Mechanism of bacterial transcription initiation: RNA polymerase ? promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis, J. Mol. Biol, vol.412, pp.754-771, 2011.

K. Brodolin, N. Zenkin, and K. Severinov, Remodeling of the sigma70 subunit non-template DNA strand contacts during the final step of transcription initiation, J. Mol. Biol, vol.350, pp.930-937, 2005.

A. Feklistov and S. A. Darst, Structural basis for promoter-10 element recognition by the bacterial RNA polymerase subunit, Cell, vol.147, pp.1257-1269, 2011.

Y. Zhang, Y. Feng, S. Chatterjee, S. Tuske, M. X. Ho et al., Structural basis of transcription initiation, Science, vol.338, pp.1076-1080, 2012.

D. B. Srivastava, K. Leon, J. Osmundson, A. L. Garner, L. A. Weiss et al., Structure and function of CarD, an essential mycobacterial transcription factor, Proc. Natl. Acad. Sci. U.S.A, vol.110, pp.12619-12624, 2013.

Y. Hu, Z. Morichaud, S. Chen, J. Leonetti, and K. Brodolin, Mycobacterium tuberculosis RbpA protein is a new type of transcriptional activator that stabilizes the A -containing RNA polymerase holoenzyme, Nucleic Acids Res, vol.40, pp.6547-6557, 2012.

A. Bortoluzzi, F. W. Muskett, L. C. Waters, P. W. Addis, B. Rieck et al., Mycobacterium tuberculosis RNA polymerase-binding protein A (RbpA) and its interactions with sigma factors, J. Biol. Chem, vol.288, pp.14438-14450, 2013.

F. Forti, V. Mauri, G. Dehòdeh`dehò, and D. Ghisotti, Isolation of conditional expression mutants in Mycobacterium tuberculosis by transposon mutagenesis, Tuberculosis (Edinb.), vol.91, pp.569-578, 2011.

J. C. Betts, P. T. Lukey, L. C. Robb, R. A. Mcadam, and K. Duncan, Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling, Mol. Microbiol, vol.43, pp.717-731, 2002.

R. Provvedi, F. Boldrin, F. Falciani, G. Paì-u, and R. Manganelli,

, Global transcriptional response to vancomycin in Mycobacterium tuberculosis, Microbiology, vol.155, pp.1093-1102

A. Tabib-salazar, B. Liu, P. Doughty, R. A. Lewis, S. Ghosh et al., The actinobacterial transcription factor RbpA binds to the principal sigma subunit of RNA polymerase, Nucleic Acids Res, vol.41, pp.5679-5691, 2013.

Y. Hu, Z. Morichaud, A. S. Perumal, F. Roquet-baneres, and K. Brodolin, Mycobacterium RbpA cooperates with the stress-response B subunit of RNA polymerase in promoter DNA unwinding, Nucleic Acids Res, vol.42, pp.10399-10408, 2014.

E. A. Hubin, A. Tabib-salazar, L. J. Humphrey, J. E. Flack, P. D. Olinares et al., Structural, functional, and genetic analyses of the actinobacterial transcription factor RbpA, Proc. Natl. Acad. Sci. U.S.A, vol.112, pp.7171-7176, 2015.

E. A. Hubin, A. Fay, C. Xu, J. M. Bean, R. M. Saecker et al., Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA, Elife, vol.6, p.22520, 2017.

R. K. Vishwakarma, A. M. Cao, Z. Morichaud, A. S. Perumal, E. Margeat et al., Single-molecule analysis reveals the mechanism of transcription activation in M, tuberculosis. Sci. Adv, vol.4, p.5498, 2018.

Z. Morichaud, L. Chaloin, and K. Brodolin, Regions 1.2 and 3.2 of the RNA polymerase subunit promote DNA melting and attenuate action of the antibiotic lipiarmycin, J. Mol. Biol, vol.428, pp.463-476, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01868357

G. Becker and R. Hengge-aronis, What makes an Escherichia coli promoter sigma(S) dependent? Role of the ?13/-14 nucleotide promoter positions and region 2.5 of sigma(S), Mol. Microbiol, vol.39, pp.1153-1165, 2001.

T. Cortes, O. T. Schubert, G. Rose, K. B. Arnvig, I. Comas et al., Genome-wide mapping of transcriptional start sites defines an extensive leaderless transcriptome in Mycobacterium tuberculosis, Cell Rep, vol.5, pp.1121-1131, 2013.

J. Rammohan, A. Ruiz-manzano, A. L. Garner, J. Prusa, C. L. Stallings et al., Cooperative stabilization of Mycobacterium tuberculosis rrnAP3 promoter open complexes by RbpA and CarD, Nucleic Acids Res, vol.44, pp.7304-7313, 2016.

J. Ko and T. Heyduk, Kinetics of promoter escape by bacterial RNA polymerase: effects of promoter contacts and transcription bubble collapse, Biochem. J, vol.463, pp.135-144, 2014.

E. M. Stennett, M. A. Ciuba, S. Lin, and M. Levitus, Demystifying PIFE: The photophysics behind the protein-induced fluorescence enhancement phenomenon in Cy3, J. Phys. Chem. Lett, vol.6, pp.1819-1823, 2015.

W. S. Kontur, R. M. Saecker, M. W. Capp, and M. T. Record, Late steps in the formation of E. coli RNA polymerase-lambda P R promoter open complexes: characterization of conformational changes by rapid [perturbant] upshift experiments, J. Mol. Biol, vol.376, pp.1034-1047, 2008.

E. F. Ruff, A. C. Drennan, M. W. Capp, M. A. Poulos, I. Artsimovitch et al., ) E. coli RNA polymerase determinants of open complex lifetime and structure, J. Mol. Biol, vol.427, pp.2435-2450, 2015.

J. H. Roe, R. R. Burgess, and M. T. Record, Temperature dependence of the rate constants of the Escherichia coli RNA polymerase-lambda PR promoter interaction. Assignment of the kinetic steps corresponding to protein conformational change and DNA opening, J. Mol. Biol, vol.184, pp.441-453, 1985.

B. Bae, A. Feklistov, A. Lass-napiorkowska, R. Landick, and S. A. Darst, Structure of a bacterial RNA polymerase holoenzyme open promoter complex, Elife, vol.4, 2015.

A. Kumar, B. Grimes, N. Fujita, K. Makino, R. A. Malloch et al., Role of the sigma 70 subunit of Escherichia coli RNA polymerase in transcription activation, J. Mol. Biol, vol.235, pp.405-413, 1994.

E. A. Campbell, O. Muzzin, M. Chlenov, J. L. Sun, C. A. Olson et al., Structure of the bacterial RNA polymerase promoter specificity sigma subunit, Mol. Cell, vol.9, pp.527-539, 2002.

A. Kulbachinskiy and A. Mustaev, Region 3.2 of the sigma subunit contributes to the binding of the 3 -initiating nucleotide in the RNA polymerase active center and facilitates promoter clearance during initiation, J. Biol. Chem, vol.281, pp.18273-18276, 2006.

D. Duchi, D. L. Bauer, L. Fernandez, G. Evans, N. Robb et al., RNA polymerase pausing during initial transcription, Mol. Cell, vol.63, pp.939-950, 2016.
DOI : 10.1016/j.molcel.2016.08.011

URL : https://doi.org/10.1016/j.molcel.2016.08.011

H. Boyaci, J. Chen, M. Lilic, M. Palka, R. A. Mooney et al., Fidaxomicin jams Mycobacterium tuberculosis RNA polymerase motions needed for initiation via RbpA contacts, p.34823, 2018.
DOI : 10.7554/elife.34823

URL : https://doi.org/10.7554/elife.34823

E. A. Hubin, M. Lilic, S. A. Darst, and E. A. Campbell, Structural insights into the mycobacteria transcription initiation complex from analysis of X-ray crystal structures, Nat. Commun, vol.8, p.16072, 2017.

L. Minakhin and K. Severinov, On the role of the Escherichia coli RNA polymerase sigma 70 region 4.2 and alpha-subunit C-terminal domains in promoter complex formation on the extended ?10 galP1 promoter, J. Biol. Chem, vol.278, pp.29710-29718, 2003.

S. Vuthoori, C. W. Bowers, A. Mccracken, A. J. Dombroski, and D. M. Hinton, Domain 1.1 of the sigma(70) subunit of Escherichia coli RNA polymerase modulates the formation of stable polymerase/promoter complexes, J. Mol. Biol, vol.309, pp.561-572, 2001.

M. I. Voskuil and G. H. Chambliss, The TRTGn motif stabilizes the transcription initiation open complex, J. Mol. Biol, vol.322, pp.521-532, 2002.
DOI : 10.1016/s0022-2836(02)00802-1

H. D. Burns, T. A. Belyaeva, S. J. Busby, and S. D. Minchin, Temperature-dependence of open-complex formation at two Escherichia coli promoters with extended ?10 sequences, Biochem. J, vol.317, pp.305-311, 1996.

N. Agarwal and A. K. Tyagi, Role of 5 -TGN-3 motif in the interaction of mycobacterial RNA polymerase with a promoter of 'extended ?10 class, FEMS Microbiol. Lett, vol.225, pp.75-83, 2003.

K. Okonechnikov, O. Golosova, and M. Fursov, Unipro UGENE: a unified bioinformatics toolkit, Bioinformatics, vol.28, pp.1166-1167, 2012.
DOI : 10.1093/bioinformatics/bts091

URL : https://academic.oup.com/bioinformatics/article-pdf/28/8/1166/18531177/bts091.pdf