M. Park, M. Dean, C. S. Cooper, M. Schmidt, S. J. O'brien et al., Vande Woude GF. Mechanism of met oncogene activation, Cell, vol.45, pp.895-904, 1986.

T. Nakamura, T. Nishizawa, M. Hagiya, T. Seki, M. Shimonishi et al., Molecular cloning and expression of human hepatocyte growth factor, Nature, vol.342, pp.440-443, 1989.

E. Gherardi, J. Gray, M. Stoker, M. Perryman, and R. Furlong, Purification of scatter factor, a fibroblast-derived basic protein that modulates epithelial interactions and movement, Proc Natl Acad Sci, vol.86, pp.5844-5848, 1989.

M. Stoker, E. Gherardi, M. Perryman, and J. Gray, Scatter factor is a fibroblast-derived modulator of epithelial cell mobility, Nature, vol.327, pp.239-242, 1987.

S. Corso, E. Ghiso, V. Cepero, J. R. Sierra, C. Migliore et al., Activation of HER family members in gastric carcinoma cells mediates resistance to MET inhibition, Mol Cancer, vol.9, p.121, 2010.

C. Birchmeier and E. Gherardi, Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase, Trends Cell Biol, vol.8, pp.404-410, 1998.

C. Ponzetto, A. Bardelli, Z. Zhen, F. Maina, P. Dalla-zonca et al., A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family, Cell, vol.77, pp.261-271, 1994.

M. Sachs, K. M. Weidner, V. Brinkmann, W. I. Obermeier, A. Ullrich et al., Motogenic and morphogenic activity of epithelial receptor tyrosine kinases, J Cell Biol, vol.133, pp.1095-1107, 1996.

M. Rosario and W. Birchmeier, How to make tubes: signaling by the Met receptor tyrosine kinase, Trends Cell Biol, vol.13, pp.328-335, 2003.

G. R. Blumenschein, G. B. Mills, A. M. Gonzalez-angulo, E. Gherardi, W. Birchmeier et al., Targeting the hepatocyte growth factor-cMET axis in cancer therapy, Nat Rev Cancer, vol.30, pp.89-103, 2012.

P. Peschard, T. M. Fournier, L. Lamorte, M. A. Naujokas, H. Band et al., Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein, Mol Cell, vol.8, pp.995-1004, 2001.

F. Ancot, C. Leroy, G. Muharram, J. Lefebvre, J. Vicogne et al., SheddingGenerated Met Receptor Fragments can be Routed to Either the Proteasomal or the Lysosomal Degradation Pathway, Traffic, vol.13, pp.1261-1272, 2012.

C. Birchmeier, W. Birchmeier, and E. Gherardi, Vande Woude GF. Met, metastasis, motility and more, Nat Rev Mol Cell Biol, vol.4, pp.915-925, 2003.

M. A. Lemmon and J. Schlessinger, Cell signaling by receptor tyrosine kinases, Cell, vol.141, pp.1117-1134, 2010.

P. Blume-jensen and T. Hunter, Oncogenic kinase signalling, Nature, vol.411, pp.355-365, 2001.
DOI : 10.1038/35077225

A. Ullrich and J. Schlessinger, Signal transduction by receptors with tyrosine kinase activity, Cell, vol.61, pp.203-212, 1990.
DOI : 10.1016/0092-8674(90)90801-k

C. Boccaccio and P. M. Comoglio, Invasive growth: a METdriven genetic programme for cancer and stem cells, Nat Rev Cancer, vol.6, pp.637-645, 2006.

P. A. Humphrey, S. Halabi, J. Picus, B. Sanford, N. J. Vogelzang et al., Prognostic significance of plasma scatter factor/hepatocyte growth factor levels in patients with metastatic hormone-refractory prostate cancer: results from cancer and leukemia group B 150005/9480, Clin Genitourin Cancer, vol.4, pp.269-274, 2006.

M. Nakajima, H. Sawada, Y. Yamada, A. Watanabe, M. Tatsumi et al., The prognostic significance of amplification and overexpression of c-met and c-erb B-2 in human gastric carcinomas, Cancer, vol.85, pp.1894-1902, 1999.

J. Lee, J. W. Seo, H. J. Jun, C. S. Ki, S. H. Park et al., Impact of MET amplification on gastric cancer: possible roles as a novel prognostic marker and a potential therapeutic target, Oncol Rep, vol.25, pp.1517-1524, 2011.

H. Go, Y. K. Jeon, H. J. Park, S. W. Sung, J. W. Seo et al., High MET gene copy number leads to shorter survival in patients with non-small cell lung cancer, J Thorac Oncol, vol.5, pp.305-313, 2010.

M. Jeffers, L. Schmidt, N. Nakaigawa, C. P. Webb, G. Weirich et al., Activating mutations for the met tyrosine kinase receptor in human cancer, Proc Natl Acad Sci USA, vol.94, pp.11445-11450, 1997.

D. Maritano, P. Accornero, N. Bonifaci, and C. Ponzetto, Two mutations affecting conserved residues in the Met receptor operate via different mechanisms, Oncogene, vol.19, pp.1354-1361, 2000.

K. P. Raghav, W. Wang, S. Liu, M. Chavez-macgregor, X. Meng et al., cMET and phospho-cMET protein levels in breast cancers and survival outcomes, Clin Cancer Res, vol.18, pp.2269-2277, 2012.

H. Kawakami, I. Okamoto, W. Okamoto, J. Tanizaki, K. Nakagawa et al., Targeting MET Amplification as a New Oncogenic Driver, Cancers (Basel), vol.6, pp.1540-1552, 2014.

L. Duplaquet, Z. Kherrouche, S. Baldacci, P. Jamme, A. B. Cortot et al., The multiple paths towards MET receptor addiction in cancer, Oncogene, 2018.

D. S. Krause and R. A. Van-etten, Tyrosine kinases as targets for cancer therapy, N Engl J Med, vol.353, pp.172-187, 2005.

J. Qi, M. A. Mctigue, A. Rogers, E. Lifshits, J. G. Christensen et al., Multiple mutations and bypass mechanisms can contribute to development of acquired resistance to MET inhibitors, Cancer Res, vol.71, pp.1081-1091, 2011.

V. Cepero, J. R. Sierra, S. Corso, E. Ghiso, L. Casorzo et al., MET and KRAS gene amplification mediates acquired resistance to MET tyrosine kinase inhibitors, Cancer Res, vol.70, pp.7580-7590, 2010.

M. L. Taddei, E. Giannoni, G. Comito, and P. Chiarugi, Microenvironment and tumor cell plasticity: an easy way out, Cancer Lett, vol.341, pp.80-96, 2013.

R. Sullivan and C. H. Graham, Hypoxia-driven selection of the metastatic phenotype, Cancer Metastasis Rev, vol.26, pp.319-331, 2007.

. Brahimi-horn, P. J. Mc, and . Oxygen, FEBS Lett, vol.581, pp.3582-3591, 2007.

M. C. Brahimi-horn, J. Chiche, and J. Pouyssegur, Hypoxia and cancer, J Mol Med (Berl), vol.85, pp.1301-1307, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00319797

M. C. Brahimi-horn, J. Chiche, and J. Pouyssegur, Hypoxia signalling controls metabolic demand, Curr Opin Cell Biol, vol.19, pp.223-229, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00319880

M. Ivan, K. Kondo, H. Yang, W. Kim, J. Valiando et al., HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing, Science, vol.292, pp.464-68, 2001.

P. Jaakkola, D. R. Mole, Y. M. Tian, M. I. Wilson, J. Gielbert et al., Targeting of HIF-alpha to the von HippelLindau ubiquitylation complex by O2-regulated prolyl hydroxylation, Science, vol.292, pp.468-72, 2001.

D. A. Chan, P. D. Sutphin, N. C. Denko, and A. J. Giaccia, Role of prolyl hydroxylation in oncogenically stabilized hypoxia-inducible factor-1alpha, J Biol Chem, vol.277, pp.40112-40117, 2002.

W. R. Wilson and M. P. Hay, Targeting hypoxia in cancer therapy, Nat Rev Cancer, vol.11, pp.393-410, 2011.

D. Shweiki, A. Itin, D. Soffer, and E. Keshet, Vascular endothelial growth factor induced by hypoxia may mediate hypoxiainitiated angiogenesis, Nature, vol.359, pp.843-845, 1992.

H. F. Dvorak, J. A. Nagy, D. Feng, L. F. Brown, and A. M. Dvorak, Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis, Curr Top Microbiol Immunol, vol.237, pp.97-132, 1999.

S. Srinivasan, V. Chitalia, R. D. Meyer, E. Hartsough, M. Mehta et al., Hypoxia-induced expression of phosducinlike 3 regulates expression of VEGFR-2 and promotes angiogenesis, Angiogenesis, vol.18, pp.449-62, 2015.

Y. Wang and M. Ohh, Oxygen-mediated endocytosis in cancer, J Cell Mol Med, vol.14, pp.496-503, 2010.

T. Ide, Y. Kitajima, A. Miyoshi, T. Ohtsuka, M. Mitsuno et al., Tumor-stromal cell interaction under hypoxia increases the invasiveness of pancreatic cancer cells through the hepatocyte growth factor/c-Met pathway, Int J Cancer, vol.119, pp.2750-2759, 2006.

S. Pennacchietti, P. Michieli, M. Galluzzo, M. Mazzone, S. Giordano et al., Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene, Cancer Cell, vol.3, pp.347-361, 2003.

D. P. Bottaro and L. A. Liotta, Cancer: Out of air is not out of action, Nature, vol.423, pp.593-595, 2003.

Y. H. Lee, B. L. Morrison, and D. P. Bottaro, Synergistic signaling of tumor cell invasiveness by hepatocyte growth factor and hypoxia, J Biol Chem, vol.289, pp.20448-20461, 2014.

N. Ollivier, J. Vicogne, A. Vallin, H. Drobecq, R. Desmet et al., A one-pot three-segment ligation strategy for protein chemical synthesis, Angew Chem Int Ed Engl, vol.51, pp.209-213, 2012.

C. Simonneau, B. Leclercq, A. Mougel, E. Adriaenssens, C. Paquet et al., Semi-synthesis of a HGF/SF kringle one (K1) domain scaffold generates a potent in vivo MET receptor agonist, Chem Sci, vol.6, pp.2110-2121, 2015.

M. Merchant, X. Ma, H. R. Maun, Z. Zheng, J. Peng et al., Monovalent antibody design and mechanism of action of onartuzumab, a MET antagonist with anti-tumor activity as a therapeutic agent, Proc Natl Acad Sci U S A, vol.110, pp.2987-2996, 2013.

J. Lefebvre, F. Ancot, C. Leroy, G. Muharram, A. Lemiere et al., Met degradation: more than one stone to shoot a receptor down, FASEB J, vol.26, pp.1387-1399, 2012.

M. Hayashi, M. Sakata, T. Takeda, M. Tahara, T. Yamamoto et al., Up-regulation of c-met protooncogene product expression through hypoxia-inducible factor-1alpha is involved in trophoblast invasion under low-oxygen tension, Endocrinology, vol.146, pp.4682-4689, 2005.

H. J. Knowles, Y. M. Tian, D. R. Mole, and A. L. Harris, Novel mechanism of action for hydralazine: induction of hypoxiainducible factor-1alpha, vascular endothelial growth factor, and angiogenesis by inhibition of prolyl hydroxylases, Circ Res, vol.95, pp.162-169, 2004.

A. C. Epstein, J. M. Gleadle, L. A. Mcneill, K. S. Hewitson, J. O'rourke et al., C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation, Cell, vol.107, pp.43-54, 2001.
URL : https://hal.archives-ouvertes.fr/in2p3-00023372

M. R. Hoenig, C. Bianchi, and F. W. Sellke, Hypoxia inducible factor-1 alpha, endothelial progenitor cells, monocytes, cardiovascular risk, wound healing, cobalt and hydralazine: a unifying hypothesis, Curr Drug Targets, vol.9, pp.422-435, 2008.

S. Tinton, Q. N. Tran-nguyen, and P. Buc-calderon, Role of protein-phosphorylation events in the anoxia signaltransduction pathway leading to the inhibition of total protein synthesis in isolated hepatocytes, Eur J Biochem, vol.249, pp.121-126, 1997.

M. Nakayama, K. Takahashi, T. Kitamuro, K. Yasumoto, D. Katayose et al., Repression of heme oxygenase-1 by hypoxia in vascular endothelial cells, Biochem Biophys Res Commun, vol.271, pp.665-671, 2000.

J. Lee, S. H. Ou, J. M. Lee, H. C. Kim, M. Hong et al., Gastrointestinal malignancies harbor actionable MET exon 14 deletions, Oncotarget, vol.6, pp.28211-28233, 2015.

B. Foveau, F. Ancot, C. Leroy, A. Petrelli, K. Reiss et al., Downregulation of the Met Receptor Tyrosine Kinase by Presenilin-dependent Regulated Intramembrane Proteolysis, Mol Biol Cell, vol.20, pp.2495-507, 2009.

G. Skead and D. Govender, Gene of the month: MET, J Clin Pathol, vol.68, pp.405-409, 2015.

A. Furlan, Z. Kherrouche, R. Montagne, M. C. Copin, and D. Tulasne, Thirty years of research on met receptor to move a biomarker from bench to bedside, Cancer Res, vol.74, pp.6737-6744, 2014.

C. R. Maroun, M. A. Naujokas, M. Holgado-madruga, A. J. Wong, and M. Park, The tyrosine phosphatase SHP-2 is required for sustained activation of extracellular signal-regulated kinase and epithelial morphogenesis downstream from the met receptor tyrosine kinase, Mol Cell Biol, vol.20, pp.8513-8525, 2000.

H. L. Palka, M. Park, and N. K. Tonks, Hepatocyte growth factor receptor tyrosine kinase met is a substrate of the receptor protein-tyrosine phosphatase DEP-1, J Biol Chem, vol.278, pp.5728-5735, 2003.

V. Sangwan, G. N. Paliouras, J. V. Abella, N. Dube, A. Monast et al., Regulation of the Met receptortyrosine kinase by the protein-tyrosine phosphatase 1B, T-cell phosphatase, J Biol Chem, vol.283, pp.34374-34383, 2008.

H. Ten-freyhaus, M. Dagnell, M. Leuchs, M. Vantler, E. M. Berghausen et al., Hypoxia enhances platelet-derived growth factor signaling in the pulmonary vasculature by down-regulation of protein tyrosine phosphatases, Am J Respir Crit Care Med, vol.183, pp.1092-1102, 2011.

D. M. Dicara, D. Y. Chirgadze, A. R. Pope, A. Karatt-vellatt, A. Winter et al., Characterization and structural determination of a new anti-MET function-blocking antibody with binding epitope distinct from the ligand binding domain, Sci Rep, vol.7, p.9000, 2017.

T. G. Graeber, C. Osmanian, T. Jacks, D. E. Housman, C. J. Koch et al., Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours, Nature, vol.379, pp.88-91, 1996.

K. M. Comerford, T. J. Wallace, J. Karhausen, N. A. Louis, M. C. Montalto et al., Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene, Cancer Res, vol.62, pp.3387-3394, 2002.

H. Doktorova, J. Hrabeta, M. A. Khalil, and T. Eckschlager, Hypoxia-induced chemoresistance in cancer cells: The role of not only HIF-1, Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, vol.159, pp.166-177, 2015.

J. Liu, F. Yao, R. Wu, M. Morgan, A. Thorburn et al., Mediation of the DCC apoptotic signal by DIP13 alpha, J Biol Chem, vol.277, pp.26281-26285, 2002.

H. Yamamoto, E. J. Yun, H. P. Gerber, N. Ferrara, J. A. Whitsett et al., Epithelial-vascular cross talk mediated by VEGF-A and HGF signaling directs primary septae formation during distal lung morphogenesis, Dev Biol, vol.308, pp.44-53, 2007.

Q. Xie, R. Bradley, L. Kang, J. Koeman, M. L. Ascierto et al., Hepatocyte growth factor (HGF) autocrine activation predicts sensitivity to MET inhibition in glioblastoma, Proc Natl Acad Sci USA, vol.109, pp.570-575, 2012.
DOI : 10.1073/pnas.1119059109

URL : http://www.pnas.org/content/109/2/570.full.pdf

G. M. Frampton, S. M. Ali, M. Rosenzweig, J. Chmielecki, X. Lu et al., Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors, Cancer Discov, vol.5, pp.850-59, 2015.

P. K. Paik, A. Drilon, P. D. Fan, H. Yu, N. Rekhtman et al., Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring MET mutations causing exon 14 skipping, Cancer Discov, vol.5, pp.842-891, 2015.
DOI : 10.1158/2159-8290.cd-14-1467

URL : http://cancerdiscovery.aacrjournals.org/content/5/8/842.full.pdf

S. H. Ou, E. L. Kwak, C. Siwak-tapp, J. Dy, K. Bergethon et al., Activity of crizotinib (PF02341066), a dual mesenchymal-epithelial transition (MET) and anaplastic lymphoma kinase (ALK) inhibitor, in a non-small cell lung cancer patient with de novo MET amplification, J Thorac Oncol, vol.6, pp.942-946, 2011.