S. Andrzejewski, S. P. Gravel, M. Pollak, and J. St-pierre, Metformin directly acts on mitochondria to alter cellular bioenergetics, Cancer & metabolism, vol.2, p.12, 2014.

H. R. Bridges, A. J. Jones, M. N. Pollak, and J. Hirst, Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria, Biochem J, vol.462, issue.3, pp.475-87, 2014.

M. R. Owen, E. Doran, and A. P. Halestrap, Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain, Biochem J, vol.348, pp.607-621, 2000.

M. Y. El-mir, V. Nogueira, E. Fontaine, N. Averet, M. Rigoulet et al., Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I, J Biol Chem, vol.275, issue.1, pp.223-231, 2000.
URL : https://hal.archives-ouvertes.fr/inserm-00390049

S. E. Inzucchi, D. G. Maggs, G. R. Spollett, S. L. Page, F. S. Rife et al., Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus, N Engl J Med, vol.338, issue.13, pp.867-72, 1998.

M. Stumvoll, N. Nurjhan, G. Perriello, G. Dailey, and J. E. Gerich, Metabolic effects of metformin in non-insulindependent diabetes mellitus, N Engl J Med, vol.333, issue.9, pp.550-554, 1995.

G. Perriello, P. Misericordia, E. Volpi, A. Santucci, C. Santucci et al., Acute antihyperglycemic mechanisms of metformin in NIDDM. Evidence for suppression of lipid oxidation and hepatic glucose production, Diabetes, vol.43, issue.7, pp.920-928, 1994.

R. J. Shaw, K. A. Lamia, D. Vasquez, S. H. Koo, N. Bardeesy et al., The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin, Science, vol.310, issue.5754, pp.1642-1648, 2005.

J. M. Evans, L. A. Donnelly, A. M. Emslie-smith, D. R. Alessi, and A. D. Morris, Metformin and reduced risk of cancer in diabetic patients, Bmj, vol.330, issue.7503, p.15849206, 2005.

B. J. Quinn, H. Kitagawa, R. M. Memmott, J. J. Gills, and P. A. Dennis, Repositioning metformin for cancer prevention and treatment, Trends in endocrinology and metabolism: TEM, vol.24, issue.9, p.23773243, 2013.
DOI : 10.1016/j.tem.2013.05.004

M. N. Pollak, Investigating metformin for cancer prevention and treatment: the end of the beginning. Cancer discovery, vol.2, p.22926251, 2012.

W. W. Wheaton, S. E. Weinberg, R. B. Hamanaka, S. Soberanes, L. B. Sullivan et al., Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis, eLife, vol.3, p.2242, 2014.

D. B. Shackelford and R. J. Shaw, The LKB1-AMPK pathway: metabolism and growth control in tumour suppression, Nat Rev Cancer, vol.9, issue.8, 2009.
DOI : 10.1038/nrc2676

URL : http://europepmc.org/articles/pmc2756045?pdf=render

G. Zhou, R. Myers, Y. Li, Y. Chen, X. Shen et al., Role of AMP-activated protein kinase in mechanism of metformin action, J Clin Invest, vol.108, issue.8, p.11602624, 2001.

L. G. Fryer, A. Parbu-patel, and D. Carling, The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways, J Biol Chem, vol.277, issue.28, p.11994296, 2002.
DOI : 10.1074/jbc.m202489200

URL : http://www.jbc.org/content/277/28/25226.full.pdf

S. A. Hawley, A. E. Gadalla, G. S. Olsen, and D. G. Hardie, The antidiabetic drug metformin activates the AMPactivated protein kinase cascade via an adenine nucleotide-independent mechanism, Diabetes, vol.51, issue.8, pp.2420-2425, 2002.
DOI : 10.2337/diabetes.51.8.2420

URL : http://diabetes.diabetesjournals.org/content/51/8/2420.full.pdf

M. Buzzai, R. G. Jones, R. K. Amaravadi, J. J. Lum, R. J. Deberardinis et al., Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth, Cancer Res, vol.67, issue.14, p.17638885, 2007.

X. Huang, S. Wullschleger, N. Shpiro, V. A. Mcguire, K. Sakamoto et al., Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice, Biochem J, vol.412, issue.2, pp.211-232, 2008.

A. Kalender, A. Selvaraj, S. Y. Kim, P. Gulati, S. Brule et al., independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner, Cell Metab, vol.11, issue.5, p.20444419, 2010.

R. J. Dowling, M. Zakikhani, I. G. Fantus, M. Pollak, and N. Sonenberg, Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells, Cancer Res, vol.67, issue.22, pp.10804-10816, 2007.

X. Liu, R. R. Chhipa, S. Pooya, M. Wortman, S. Yachyshin et al., Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK, Proc Natl Acad Sci U S A, vol.111, issue.4, pp.435-479, 2014.

M. Zakikhani, R. Dowling, I. G. Fantus, N. Sonenberg, and M. Pollak, Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells, Cancer Res, vol.66, issue.21, p.17062558, 2006.
DOI : 10.1097/01.ogx.0000256746.99250.dd

A. Vazquez-martin, C. Oliveras-ferraros, and J. A. Menendez, The antidiabetic drug metformin suppresses HER2 (erbB-2) oncoprotein overexpression via inhibition of the mTOR effector p70S6K1 in human breast carcinoma cells, Cell Cycle, vol.8, issue.1, p.19106626, 2009.

E. E. Vincent, P. P. Coelho, J. Blagih, T. Griss, B. Viollet et al., Differential effects of AMPK agonists on cell growth and metabolism, Oncogene, 2014.

M. Wu, A. Neilson, A. L. Swift, R. Moran, J. Tamagnine et al., Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells, Am J Physiol Cell Physiol, vol.292, issue.1, pp.125-161, 2007.

B. Faubert, G. Boily, S. Izreig, T. Griss, B. Samborska et al., AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo, Cell Metab, vol.17, issue.1, p.23274086, 2013.

K. R. Laderoute, K. Amin, J. M. Calaoagan, M. Knapp, T. Le et al., 5'-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments, Mol Cell Biol, vol.26, issue.14, pp.5336-5383, 2006.

R. J. Shaw, M. Kosmatka, N. Bardeesy, R. L. Hurley, L. A. Witters et al., The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress, Proc Natl Acad Sci U S A, vol.101, issue.10, p.14985505, 2004.

A. Tzatsos and K. V. Kandror, Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptordependent mTOR-mediated insulin receptor substrate 1 phosphorylation, Mol Cell Biol, vol.26, issue.1, pp.63-76, 2006.
DOI : 10.1128/mcb.26.1.63-76.2006

URL : https://mcb.asm.org/content/26/1/63.full.pdf

R. J. Dowling, I. Topisirovic, A. T. Bidinosti, M. Fonseca, B. D. Petroulakis et al., mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs, Science, vol.328, issue.5982, p.20508131, 2010.

S. M. Fendt, E. L. Bell, M. A. Keibler, S. M. Davidson, G. J. Wirth et al., Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism, Epub 2013/05/21, vol.73, p.23687346, 2013.

A. R. Mullen, W. W. Wheaton, J. E. Chen, P. H. Sullivan, L. B. Cheng et al., Reductive carboxylation supports growth in tumour cells with defective mitochondria, Nature, vol.481, issue.7381, pp.385-393, 2012.

G. Hatzivassiliou, F. Zhao, D. E. Bauer, C. Andreadis, A. N. Shaw et al., ATP citrate lyase inhibition can suppress tumor cell growth, Cancer Cell, vol.8, issue.4, p.16226706, 2005.

D. R. Wise, P. S. Ward, J. E. Shay, J. R. Cross, J. J. Gruber et al., Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability, Proc Natl Acad Sci U S A, vol.108, issue.49, pp.19611-19617, 2011.

C. M. Metallo, P. A. Gameiro, E. L. Bell, K. R. Mattaini, J. Yang et al., Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia, Nature, vol.481, issue.7381, pp.380-384, 2012.

F. Weinberg, R. Hamanaka, W. W. Wheaton, S. Weinberg, J. Joseph et al., Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity, Proc Natl Acad Sci U S A, vol.107, p.20421486, 2010.

M. Rana, I. De-coo, F. Diaz, H. Smeets, and C. T. Moraes, An out-of-frame cytochrome b gene deletion from a patient with parkinsonism is associated with impaired complex III assembly and an increase in free radical production, Ann Neurol, vol.48, issue.5, p.11079541, 2000.

J. J. Kamphorst, M. K. Chung, J. Fan, and J. D. Rabinowitz, Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate, Cancer & metabolism, vol.2, 2014.

K. Birsoy, R. Possemato, F. K. Lorbeer, E. C. Bayraktar, P. Thiru et al., Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides, Nature, vol.508, issue.7494, pp.108-120, 2014.

S. Y. Lunt and M. G. Vander-heiden, Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annual review of cell and developmental biology, vol.27, pp.441-64, 2011.

R. J. Deberardinis, N. Sayed, D. Ditsworth, and C. B. Thompson, Brick by brick: metabolism and tumor cell growth, Curr Opin Genet Dev, vol.18, issue.1, pp.54-61, 2008.

C. S. Ahn and C. M. Metallo, Mitochondria as biosynthetic factories for cancer proliferation. Cancer & metabolism, vol.3, p.1, 2015.

J. A. Menendez, C. Oliveras-ferraros, S. Cufi, B. Corominas-faja, J. Joven et al., Metformin is synthetically lethal with glucose withdrawal in cancer cells, Cell Cycle, vol.11, issue.15, p.22809961, 2012.

M. Morita, S. P. Gravel, V. Chenard, K. Sikstrom, L. Zheng et al., mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation, Cell Metab, vol.18, issue.5, 2013.
DOI : 10.1016/j.cmet.2013.10.001

URL : https://doi.org/10.1016/j.cmet.2013.10.001

K. Duvel, J. L. Yecies, S. Menon, P. Raman, A. I. Lipovsky et al., Activation of a metabolic gene regulatory network downstream of mTOR complex 1, Mol Cell, vol.39, issue.2, p.20670887, 2010.

D. B. Shackelford, E. Abt, L. Gerken, D. S. Vasquez, A. Seki et al., LKB1 Inactivation Dictates Therapeutic Response of Non-Small Cell Lung Cancer to the Metabolism Drug Phenformin, Cancer Cell, vol.23, issue.2, p.23352126, 2013.

D. Bungard, B. J. Fuerth, P. Y. Zeng, B. Faubert, N. L. Maas et al., Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation, Science, vol.329, issue.5996, p.20647423, 2010.
DOI : 10.1126/science.1191241

URL : http://europepmc.org/articles/pmc3922052?pdf=render

L. Liu, J. Ulbrich, J. Muller, T. Wustefeld, L. Aeberhard et al., Deregulated MYC expression induces dependence upon AMPK-related kinase 5, Nature, vol.483, issue.7391, p.22460906, 2012.

R. J. Deberardinis, J. J. Lum, G. Hatzivassiliou, and C. B. Thompson, The biology of cancer: metabolic reprogramming fuels cell growth and proliferation, Cell Metab, vol.7, issue.1, 2008.

D. E. Bauer, G. Hatzivassiliou, F. Zhao, C. Andreadis, and C. B. Thompson, ATP citrate lyase is an important component of cell growth and transformation, Oncogene, vol.24, issue.41, p.16007201, 2005.

S. M. Fendt, E. L. Bell, M. A. Keibler, B. A. Olenchock, J. R. Mayers et al., Reductive glutamine metabolism is a function of the alpha-ketoglutarate to citrate ratio in cells, Nature communications, vol.4, 2013.

P. Yuan, K. Ito, R. Perez-lorenzo, D. Guzzo, C. Lee et al., Phenformin enhances the therapeutic benefit of BRAF(V600E) inhibition in melanoma, Proc Natl Acad Sci U S A, vol.110, issue.45, pp.18226-18257, 2013.

R. C. Sun and N. C. Denko, Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth, Cell Metab, vol.19, issue.2, pp.285-92, 2014.

I. Papandreou, R. A. Cairns, L. Fontana, A. L. Lim, and N. C. Denko, HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption, Cell Metab, vol.3, issue.3, p.16517406, 2006.

J. W. Kim, I. Tchernyshyov, G. L. Semenza, and C. V. Dang, HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia, Cell Metab, vol.3, issue.3, p.16517405, 2006.

C. Garofalo, M. Capristo, M. C. Manara, C. Mancarella, L. Landuzzi et al., Metformin as an adjuvant drug against pediatric sarcomas: hypoxia limits therapeutic effects of the drug, PLoS One, vol.8, issue.12, p.83832, 2013.

R. G. Jones, D. R. Plas, S. Kubek, M. Buzzai, J. Mu et al., AMP-activated protein kinase induces a p53-dependent metabolic checkpoint, Mol Cell, vol.18, issue.3, p.15866171, 2005.

B. Faubert, E. E. Vincent, T. Griss, B. Samborska, S. Izreig et al., Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1alpha, Proc Natl Acad Sci U S A, vol.111, issue.7, pp.2554-2563, 2014.

S. Mcguirk, S. P. Gravel, G. Deblois, D. J. Papadopoli, B. Faubert et al., PGC-1alpha supports glutamine metabolism in breast cancer, Cancer & metabolism, vol.1, issue.1, p.22, 2013.

F. Dupuy, T. Griss, J. Blagih, G. Bridon, D. Avizonis et al., LKB1 is a central regulator of tumor initiation and pro-growth metabolism in ErbB2-mediated breast cancer, Cancer & metabolism, vol.1, issue.1, 2013.

J. Folch, I. Ascoli, M. Lees, J. A. Meath, and B. N. Le, Preparation of lipide extracts from brain tissue, J Biol Chem, vol.191, issue.2, pp.833-874, 1951.

A. T. Kharroubi, T. M. Masterson, T. A. Aldaghlas, K. A. Kennedy, and J. K. Kelleher, Isotopomer spectral analysis of triglyceride fatty acid synthesis in 3T3-L1 cells. The American journal of physiology, vol.263, p.1415685, 1992.

J. D. Young, INCA: a computational platform for isotopically non-stationary metabolic flux analysis, Bioinformatics, vol.30, issue.9, pp.1333-1338, 2014.

M. R. Antoniewicz, J. K. Kelleher, and G. Stephanopoulos, Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements, Metab Eng, vol.8, issue.4, p.16631402, 2006.