M. Shackleton, F. Vaillant, K. J. Simpson, J. Stingl, and G. K. Smyth, Generation of a functional mammary gland from a single stem cell, Nature, vol.439, p.16397499, 2006.

J. Stingl, P. Eirew, I. Ricketson, M. Shackleton, and F. Vaillant, Purification and unique properties of mammary epithelial stem cells, Nature, vol.439, p.16395311, 2006.
DOI : 10.1038/nature04496

A. C. Rios, N. Y. Fu, G. J. Lindeman, and J. E. Visvader, In situ identification of bipotent stem cells in the mammary gland, Nature, vol.506, p.24463516, 2014.

A. Van-keymeulen, A. S. Rocha, M. Ousset, B. Beck, and G. Bouvencourt, Distinct stem cells contribute to mammary gland development and maintenance, Nature, vol.479, pp.189-193, 2011.

G. Molyneux, F. C. Geyer, F. A. Magnay, A. Mccarthy, and H. Kendrick, BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells, Cell Stem Cell, vol.7, p.20804975, 2010.
DOI : 10.1016/j.stem.2010.07.010

URL : https://doi.org/10.1016/j.stem.2010.07.010

A. Prat and C. M. Perou, Mammary development meets cancer genomics, Nature medicine, vol.15, pp.842-844, 2009.
DOI : 10.1038/nm0809-842

K. E. Sleeman, H. Kendrick, D. Robertson, C. M. Isacke, and A. Ashworth, Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland, J Cell Biol, vol.176, p.17190790, 2007.

M. Shehata, A. Teschendorff, G. Sharp, N. Novcic, and A. Russell, Phenotypic and functional characterization of the luminal cell hierarchy of the mammary gland, Breast Cancer Res, vol.14, p.134, 2012.

S. R. Oakes, M. J. Naylor, M. L. Asselin-labat, K. D. Blazek, and M. Gardiner-garden, The Ets transcription factor Elf5 specifies mammary alveolar cell fate, Genes Dev, vol.22, p.18316476, 2008.
DOI : 10.1101/gad.1614608

URL : http://genesdev.cshlp.org/content/22/5/581.full.pdf

J. Zhou, R. Chehab, J. Tkalcevic, M. J. Naylor, and J. Harris, Elf5 is essential for early embryogenesis and mammary gland development during pregnancy and lactation, EMBO J, vol.24, p.15650748, 2005.
DOI : 10.1038/sj.emboj.7600538

URL : http://emboj.embopress.org/content/24/3/635.full.pdf

M. L. Asselin-labat, K. D. Sutherland, H. Barker, R. Thomas, and M. Shackleton, Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation, Nat Cell Biol, vol.9, p.17187062, 2007.

J. L. Regan, H. Kendrick, F. A. Magnay, V. Vafaizadeh, and B. Groner, ) c-Kit is required for growth and survival of the cells of origin of Brca1-mutation-associated breast cancer, Oncogene, vol.31, p.21765473, 2012.

S. Sale, D. Lafkas, and S. Artavanis-tsakonas, Notch2 genetic fate mapping reveals two previously unrecognized mammary epithelial lineages, Nat Cell Biol, vol.15, pp.451-460, 2013.

D. Lafkas, V. Rodilla, M. Huyghe, L. Mourao, and H. Kiaris, Notch3 marks clonogenic mammary luminal progenitor cells in vivo, J Cell Biol, vol.203, p.24100291, 2013.

J. E. Visvader and J. Stingl, Mammary stem cells and the differentiation hierarchy: current status and perspectives, Genes Dev, vol.28, p.24888586, 2014.

M. Beleut, R. D. Rajaram, M. Caikovski, A. Ayyanan, and D. Germano, Two distinct mechanisms underlie progesterone-induced proliferation in the mammary gland, Proc Nat Acad Sci, vol.107, pp.2989-2994, 2010.

S. Mallepell, A. Krust, P. Chambon, and C. Brisken, Paracrine signaling through the epithelial estrogen receptor alpha is required for proliferation and morphogenesis in the mammary gland, Proc Nat Acad Sci, vol.103, p.16452162, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00188034

B. W. Booth and G. H. Smith, Estrogen receptor-alpha and progesterone receptor are expressed in label-retaining mammary epithelial cells that divide asymmetrically and retain their template DNA strands, Breast Cancer Res, vol.8, 2006.

U. Koch, R. Lehal, and F. Radtke, Stem cells living with a Notch, Development, vol.140, p.23362343, 2013.

S. Artavanis-tsakonas and M. A. Muskavitch, Notch: the past, the present, and the future, Curr Top Dev Biol, vol.92, pp.1-29, 2010.

T. Bouras, B. Pal, F. Vaillant, G. Harburg, and M. L. Asselin-labat, Notch signaling regulates mammary stem cell function and luminal cell-fate commitment, Cell Stem Cell, vol.3, pp.429-441, 2008.

N. Gjorevski and C. M. Nelson, Integrated morphodynamic signalling of the mammary gland, Nat Rev Mol Cell Biol, vol.12, pp.581-593, 2011.

S. Fre, E. Hannezo, S. Sale, M. Huyghe, and D. Lafkas, Notch lineages and activity in intestinal stem cells determined by a new set of knock-in mice, PLoS ONE, vol.6, p.25785, 2011.

M. D. Muzumdar, B. Tasic, K. Miyamichi, L. Li, and L. Luo, A global double-fluorescent Cre reporter mouse, Genesis, vol.45, p.17868096, 2007.

O. Wansbury, A. Mackay, N. Kogata, C. Mitsopoulos, and H. Kendrick, Transcriptome analysis of embryonic mammary cells reveals insights into mammary lineage establishment, Breast Cancer Res, vol.13, p.79, 2011.

S. J. Hatsell and P. Cowin, Gli3-mediated repression of Hedgehog targets is required for normal mammary development, Development, vol.133, p.16914490, 2006.

K. Boras-granic, P. Dann, J. Vanhouten, A. Karaplis, and J. Wysolmerski, Deletion of the nuclear localization sequences and C-terminus of PTHrP impairs embryonic mammary development but also inhibits PTHrP production, PLoS ONE, vol.9, p.24785493, 2014.

P. Eirew, J. Stingl, and C. J. Eaves, Quantitation of human mammary epithelial stem cells with in vivo regenerative properties using a subrenal capsule xenotransplantation assay, Nat Protoc, vol.5, pp.1945-1956, 2010.

E. Lim, D. Wu, B. Pal, T. Bouras, and M. L. Asselin-labat, Transcriptome analyses of mouse and human mammary cell subpopulations reveal multiple conserved genes and pathways, Breast Cancer Res, vol.12, p.20346151, 2010.

T. H. Chang, K. Kunasegaran, G. A. Tarulli, D. Silva, D. Voorhoeve et al., New insights into lineage restriction of mammary gland epithelium using parity-identified mammary epithelial cells, Breast Cancer Res, vol.16, p.1, 2014.

A. J. Ewald, A. Brenot, M. Duong, B. S. Chan, and Z. Werb, Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis, Dev Cell, vol.14, pp.570-581, 2008.
DOI : 10.1016/j.devcel.2008.03.003

URL : https://doi.org/10.1016/j.devcel.2008.03.003

G. Shyamala, W. Schneider, and M. C. Guiot, Estrogen dependent regulation of estrogen receptor gene expression in normal mammary gland and its relationship to estrogenic sensitivity, Receptor, vol.2, p.1472945, 1992.

R. D. Rajaram and C. Brisken, Paracrine signaling by progesterone, Mol Cell Endocrinol, vol.357, p.21945477, 2012.
DOI : 10.1016/j.mce.2011.09.018

URL : https://infoscience.epfl.ch/record/178405/files/Paracrine signaling by progesterone Rajaram Brisken.pdf

W. A. Guyette, R. J. Matusik, and J. M. Rosen, Prolactin-mediated transcriptional and post-transcriptional control of casein gene expression, Cell, vol.17, p.487427, 1979.

V. Bolos, M. E. Martinez-poveda, B. Luxan, G. Canamero, and M. , Notch activation stimulates migration of breast cancer cells and promotes tumor growth, Breast Cancer Res, vol.15, 2013.

H. Kiaris, K. Politi, L. M. Grimm, M. Szabolcs, and P. Fisher, Modulation of notch signaling elicits signature tumors and inhibits hras1-induced oncogenesis in the mouse mammary epithelium, Am J Pathol, vol.165, p.15277242, 2004.

H. Ling and P. Jolicoeur, Notch-1 signaling promotes the cyclinD1-dependent generation of mammary tumor-initiating cells that can revert to bi-potential progenitors from which they arise, Oncogene, vol.32, p.22907433, 2013.

R. A. Irizarry, B. M. Bolstad, C. F. Cope, L. M. Hobbs, and B. , Summaries of Affymetrix GeneChip probe level data, Nucleic Acids Res, vol.31, 2003.

A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, and B. L. Ebert, Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc Nat Acad Sci, vol.102, p.16199517, 2005.
DOI : 10.1073/pnas.0506580102

URL : http://www.pnas.org/content/102/43/15545.full.pdf