Y. Shi and J. Massague, Mechanisms of TGF-beta signaling from cell membrane to the nucleus, Cell, vol.113, p.12809600, 2003.

S. Jia, Z. Ren, X. Li, Y. Zheng, and A. Meng, smad2 and smad3 are required for mesendoderm induction by transforming growth factor-beta/nodal signals in zebrafish, J Biol Chem, vol.283, p.18025082, 2008.
DOI : 10.1074/jbc.m707578200

URL : http://www.jbc.org/content/283/4/2418.full.pdf

J. Massague, J. Seoane, and D. Wotton, Smad transcription factors, Genes Dev, vol.19, p.16322555, 2005.
DOI : 10.1101/gad.1350705

URL : http://genesdev.cshlp.org/content/19/23/2783.full.pdf

P. Muller, K. W. Rogers, B. M. Jordan, J. S. Lee, and D. Robson, Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system, Science, vol.336, pp.721-724, 2012.

J. T. Bennett, K. Joubin, S. Cheng, P. Aanstad, and R. Herwig, Nodal signaling activates differentiation genes during zebrafish gastrulation, Dev Biol, vol.304, p.17306247, 2007.
DOI : 10.1016/j.ydbio.2007.01.012

URL : https://doi.org/10.1016/j.ydbio.2007.01.012

A. Metz, S. Knochel, P. Buchler, M. Koster, and W. Knochel, Structural and functional analysis of the BMP-4 promoter in early embryos of Xenopus laevis, Mech Dev, vol.74, p.9651472, 1998.

B. Schmid, M. Furthauer, S. A. Connors, J. Trout, and B. Thisse, Equivalent genetic roles for bmp7/ snailhouse and bmp2b/swirl in dorsoventral pattern formation, Development, vol.127, p.10662635, 2000.

A. C. Mullen, D. A. Orlando, J. J. Newman, J. Loven, and R. M. Kumar, Master transcription factors determine cell-type-specific responses to TGF-beta signaling, Cell, vol.147, p.22036565, 2011.

E. Trompouki, T. V. Bowman, L. N. Lawton, Z. P. Fan, and D. C. Wu, Lineage regulators direct BMP and Wnt pathways to cell-specific programs during differentiation and regeneration, Cell, vol.147, p.22036566, 2011.

A. Nakao, M. Afrakhte, A. Moren, T. Nakayama, and J. L. Christian, Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling, Nature, vol.389, p.9335507, 1997.

T. Imamura, M. Takase, A. Nishihara, E. Oeda, and J. Hanai, Smad6 inhibits signalling by the TGF-beta superfamily, Nature, vol.389, p.9335505, 1997.

H. M. Pogoda and D. Meyer, Zebrafish Smad7 is regulated by Smad3 and BMP signals, Dev Dyn, vol.224, p.12112463, 2002.

W. Ishida, T. Hamamoto, K. Kusanagi, K. Yagi, and M. Kawabata, Smad6 is a Smad1/5-induced smad inhibitor. Characterization of bone morphogenetic protein-responsive element in the mouse Smad6 promoter, J Biol Chem, vol.275, p.10692396, 2000.

R. P. Nagarajan, J. Zhang, W. Li, and Y. Chen, Regulation of Smad7 promoter by direct association with Smad3 and Smad4, J Biol Chem, vol.274, p.10559222, 1999.

D. P. Norris and E. J. Robertson, Asymmetric and node-specific nodal expression patterns are controlled by two distinct cis-acting regulatory elements, Genes Dev, vol.13, p.10385626, 1999.

D. P. Norris, J. Brennan, E. K. Bikoff, and E. J. Robertson, The Foxh1-dependent autoregulatory enhancer controls the level of Nodal signals in the mouse embryo, Development, vol.129, p.12091315, 2002.

Z. Liu, X. Lin, Z. Cai, Z. Zhang, and C. Han, Global identification of SMAD2 target genes reveals a role for multiple co-regulatory factors in zebrafish early gastrulas, J Biol Chem, vol.286, p.21669877, 2011.

O. Brandman and T. Meyer, Feedback loops shape cellular signals in space and time, Science, vol.322, pp.390-395, 2008.

M. Freeman, Feedback control of intercellular signalling in development, Nature, vol.408, p.11099031, 2000.

A. Tiwari and O. A. Igoshin, Coupling between feedback loops in autoregulatory networks affects bistability range, open-loop gain and switching times, Phys Biol, vol.9, p.55003, 2012.

L. Li, R. Jothi, K. Cui, J. Y. Lee, and T. Cohen, Nuclear adaptor Ldb1 regulates a transcriptional program essential for the maintenance of hematopoietic stem cells, Nature immunology, vol.12, p.21186366, 2011.

N. Meier, S. Krpic, P. Rodriguez, J. Strouboulis, and M. Monti, Novel binding partners of Ldb1 are required for haematopoietic development, Development, vol.133, p.17108004, 2006.

E. Soler, C. Andrieu-soler, E. De-boer, J. C. Bryne, and S. Thongjuea, The genome-wide dynamics of the binding of Ldb1 complexes during erythroid differentiation, Gene Dev, vol.24, p.20123907, 2010.

I. A. Wadman, H. Osada, G. G. Grutz, A. D. Agulnick, and H. Westphal, The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins, EMBO J, vol.16, p.9214632, 1997.

C. S. Hunter, S. Dixit, T. Cohen, B. Ediger, and C. Wilcox, Islet alpha-, beta-, and delta-cell development is controlled by the Ldb1 coregulator, acting primarily with the islet-1 transcription factor, Diabetes, vol.62, pp.875-886, 2013.

H. Benchabane and J. L. Wrana, GATA-and Smad1-dependent enhancers in the Smad7 gene differentially interpret bone morphogenetic protein concentrations, Mol Cell Biol, vol.23, p.12944489, 2003.

Z. Lu, K. S. Lam, N. Wang, X. Xu, and M. Cortes, LMO4 can interact with Smad proteins and modulate transforming growth factor-beta signaling in epithelial cells, Oncogene, vol.25, p.16331278, 2006.

A. J. Cross, C. M. Jeffries, J. Trewhella, and J. M. Matthews, LIM domain binding proteins 1 and 2 have different oligomeric states, J Mol Biol, vol.399, p.20382157, 2010.

A. Mylona, C. Andrieu-soler, S. Thongjuea, A. Martella, and E. Soler, Genome-wide analysis shows that Ldb1 controls essential hematopoietic genes/pathways in mouse early development and reveals novel players in hematopoiesis, Blood, vol.121, pp.2902-2913, 2013.

R. Toyama, M. Kobayashi, T. Tomita, and I. B. Dawid, Expression of LIM-domain binding protein (ldb) genes during zebrafish embryogenesis, Mech Dev, vol.71, p.9507128, 1998.

L. J. Jonk, S. Itoh, C. H. Heldin, P. Ten-dijke, and W. Kruijer, Identification and functional characterization of a Smad binding element (SBE) in the JunB promoter that acts as a transforming growth factor-beta, activin, and bone morphogenetic protein-inducible enhancer, J Biol Chem, vol.273, p.9694870, 1998.

O. Korchynskyi and D. Ten, Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter, J Biol Chem, vol.277, p.11729207, 2002.

A. F. Schier, Nodal morphogens, Cold Spring Harb Perspect Biol, vol.1, p.3459, 2009.

D. Kimelman, Mesoderm induction: from caps to chips, Nat Rev Genet, vol.7, p.16619051, 2006.

A. Rodaway and R. Patient, Mesendoderm. an ancient germ layer?, Cell, vol.105, p.11336666, 2001.

J. Alexander and D. Y. Stainier, A molecular pathway leading to endoderm formation in zebrafish, Curr Biol, vol.9, p.10531029, 1999.

G. L. Henry and D. A. Melton, Mixer, a homeobox gene required for endoderm development, Science, vol.281, p.9651252, 1998.

Y. Kikuchi, L. A. Trinh, J. F. Reiter, J. Alexander, and D. Yelon, The zebrafish bonnie and clyde gene encodes a Mix family homeodomain protein that regulates the generation of endodermal precursors, Genes Dev, vol.14, p.10817762, 2000.

L. Zhang, H. Huang, F. Zhou, J. Schimmel, and C. G. Pardo, RNF12 controls embryonic stem cell fate and morphogenesis in zebrafish embryos by targeting Smad7 for degradation, Mol Cell, vol.46, p.22560923, 2012.

T. Ebisawa, M. Fukuchi, G. Murakami, T. Chiba, and K. Tanaka, Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation, J Biol Chem, vol.276, p.11278251, 2001.

P. Kavsak, R. K. Rasmussen, C. G. Causing, S. Bonni, and H. Zhu, Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation, Mol Cell, vol.6, p.11163210, 2000.

G. Murakami, T. Watabe, K. Takaoka, K. Miyazono, and T. Imamura, Cooperative inhibition of bone morphogenetic protein signaling by Smurf1 and inhibitory Smads, Mol Biol Cell, vol.14, p.12857866, 2003.

C. Suzuki, G. Murakami, M. Fukuchi, T. Shimanuki, and Y. Shikauchi, Smurf1 regulates the inhibitory activity of Smad7 by targeting Smad7 to the plasma membrane, J Biol Chem, vol.277, p.12151385, 2002.

W. Shi, C. Sun, B. He, W. Xiong, and X. Shi, GADD34-PP1c recruited by Smad7 dephosphorylates TGFbeta type I receptor, J Cell Biol, vol.164, p.14718519, 2004.

S. Zhang, T. Fei, L. Zhang, R. Zhang, and F. Chen, Smad7 antagonizes transforming growth factor beta signaling in the nucleus by interfering with functional Smad-DNA complex formation, Mol Cell Biol, vol.27, p.17438144, 2007.

E. De-boer, P. Rodriguez, E. Bonte, J. Krijgsveld, and E. Katsantoni, Efficient biotinylation and single-step purification of tagged transcription factors in mammalian cells and transgenic mice, Proc Natl Acad Sci U S A, vol.100, p.12802011, 2003.

X. Fan, E. G. Hagos, B. Xu, C. Sias, and K. Kawakami, Nodal signals mediate interactions between the extra-embryonic and embryonic tissues in zebrafish, Dev Biol, vol.310, p.17850782, 2007.

S. W. Kim, S. J. Yoon, E. Chuong, C. Oyolu, and A. E. Wills, Chromatin and transcriptional signatures for Nodal signaling during endoderm formation in hESCs, Dev Biol, vol.357, p.21741376, 2011.

K. Knezevic, T. Bee, N. K. Wilson, M. E. Janes, and S. Kinston, A Runx1-Smad6 rheostat controls Runx1 activity during embryonic hematopoiesis, Mol Cell Biol, vol.31, pp.2817-2826, 2011.

J. R. Kim, Y. Yoon, and K. H. Cho, Coupled feedback loops form dynamic motifs of cellular networks, Biophys J, vol.94, p.17951298, 2008.

Q. Long, A. Meng, H. Wang, J. R. Jessen, and M. J. Farrell, GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene, Development, vol.124, p.9374406, 1997.

M. Westerfield, The zebrafish book: a guide for the laboratory use of zebrafish (Brachydanio rerio), p.25590127, 1993.

M. Gering, A. R. Rodaway, B. Gottgens, R. K. Patient, and A. R. Green, The SCL gene specifies haemangioblast development from early mesoderm, EMBO J, vol.17, p.9670018, 1998.

G. J. Inman, F. J. Nicolas, J. F. Callahan, J. D. Harling, and L. M. Gaster, SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7, Mol Pharmacol, vol.62, p.12065756, 2002.

T. Jowett and Y. L. Yan, Double fluorescent in situ hybridization to zebrafish embryos, Trends Genet, vol.12, p.8909127, 1996.

S. Ridges, W. L. Heaton, D. Joshi, H. Choi, and A. Eiring, Zebrafish screen identifies novel compound with selective toxicity against leukemia, Blood, vol.119, pp.5621-5631, 2012.

V. Link, A. Shevchenko, and C. P. Heisenberg, Proteomics of early zebrafish embryos, BMC Dev Biol, vol.6, 2006.

R. M. Monteiro, S. M. De-sousa-lopes, O. Korchynskyi, P. Ten-dijke, and C. L. Mummery, Spatio-temporal activation of Smad1 and Smad5 in vivo: monitoring transcriptional activity of Smad proteins, J Cell Sci, vol.117, p.15331632, 2004.

F. C. Simoes, T. Peterkin, and R. Patient, Fgf differentially controls cross-antagonism between cardiac and haemangioblast regulators, Development, vol.138, pp.3235-3245, 2011.

N. D. Meeker, S. A. Hutchinson, L. Ho, and N. S. Trede, Method for isolation of PCR-ready genomic DNA from zebrafish tissues, Biotechniques, vol.43, p.18072590, 2007.

A. R. Bassett, C. Tibbit, C. P. Ponting, and J. L. Liu, Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system, Cell Rep, vol.4, pp.220-228, 2013.

M. Morgan, S. Anders, M. Lawrence, P. Aboyoun, and H. Pages, ShortRead: a bioconductor package for input, quality assessment and exploration of high-throughput sequence data, Bioinformatics, vol.25, pp.2607-2608, 2009.

M. Adli and B. E. Bernstein, Whole-genome chromatin profiling from limited numbers of cells using nano-ChIP-seq, Nat Protoc, vol.6, pp.1656-1668, 2011.