R. Mantovani, The molecular biology of the CCAAT-binding factor NF-Y, Gene, vol.239, pp.15-27, 1999.

D. Dolfini, F. Zambelli, G. Pavesi, and R. Mantovani, A perspective of promoter architecture from the CCAAT box, Cell Cycle, vol.8, pp.4127-4137, 2009.

M. Nardini, N. Gnesutta, G. Donati, R. Gatta, C. Forni et al., Sequence-specific transcription factor NF-Y displays histone-like DNA binding and H2B-like ubiquitination, Cell, vol.152, pp.132-143, 2013.

J. D. Fleming, G. Pavesi, P. Benatti, C. Imbriano, R. Mantovani et al., NF-Y coassociates with FOS at promoters, enhancers, repetitive elements, and inactive chromatin regions, and is stereo-positioned with growth-controlling transcription factors, Genome Res, vol.23, pp.1195-1209, 2013.

Q. Hu, J. F. Lu, R. Luo, S. Sen, and S. N. Maity, Inhibition of CBF/NF-Y mediated transcription activation arrests cells at G2/M phase and suppresses expression of genes activated at G2/M phase of the cell cycle, Nucleic Acids Res, vol.34, pp.6272-6285, 2006.

P. Benatti, V. Basile, D. Merico, L. I. Fantoni, E. Tagliafico et al., A balance between NF-Y and p53 governs the pro-and anti-apoptotic transcriptional response, Nucleic Acids Res, vol.36, pp.1415-1428, 2008.

C. Y. Kao, A. Tanimoto, N. Arima, Y. Sasaguri, and R. Padmanabhan, Transactivation of the human cdc2 promoter by adenovirus E1A. E1A induces the expression and assembly of a heteromeric complex consisting of the CCAAT box binding factor, CBF/NF-Y, and a 110-kDa DNA-binding protein, J. Biol. Chem, vol.274, pp.23043-23051, 1999.

I. Manni, G. Mazzaro, A. Gurtner, R. Mantovani, U. Haugwitz et al., NF-Y mediates the transcriptional inhibition of the cyclin B1, cyclin B2, and cdc25C promoters upon induced G2 arrest, J. Biol. Chem, vol.276, pp.5570-5576, 2001.

F. Bolognese, M. Wasner, C. L. Dohna, A. Gurtner, A. Ronchi et al., The cyclin B2 promoter depends on NF-Y, a trimer whose CCAAT-binding activity is cell-cycle regulated, Oncogene, vol.18, pp.1845-1853, 1999.

R. Gatta, D. Dolfini, R. Mantovani, and . Nf-y-joins-e2fs, Cell Death Dis, vol.2, p.162, 2011.

R. Hughes, M. Kristiansen, I. Lassot, S. Desagher, R. Mantovani et al., NF-Y is essential for expression of the proapoptotic bim gene in sympathetic neurons, Cell Death Differ, vol.18, pp.937-947, 2010.

C. Imbriano, N. Gnesutta, and R. Mantovani, The NF-Y/p53 liaison: well beyond repression, Biochim. Biophys. Acta, vol.1825, pp.131-139, 2012.

P. Benatti, D. Dolfini, A. Vigano, M. Ravo, A. Weisz et al., Specific inhibition of NF-Y subunits triggers different cell proliferation defects, Nucleic Acids Res, vol.39, pp.5356-5368, 2011.

A. J. Oldfield, P. Yang, A. E. Conway, S. Cinghu, J. M. Freudenberg et al., Histone-fold domain protein NF-Y promotes chromatin accessibility for cell typespecific master transcription factors, Mol. Cell, vol.55, pp.708-722, 2014.

A. Bhattacharya, J. M. Deng, Z. Zhang, R. Behringer, B. De-crombrugghe et al., The B subunit of the CCAAT box binding transcription factor complex (CBF/NF-Y) is essential for early mouse development and cell proliferation, Cancer Res, vol.63, pp.8167-8172, 2003.

C. Maric and M. N. Prioleau, Interplay between DNA replication and gene expression: a harmonious coexistence, Curr. Opin. Cell Biol, vol.22, pp.277-283, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00518092

B. D. Pope, I. Hiratani, and D. M. Gilbert, Domain-wide regulation of DNA replication timing during mammalian development, Chromosom. Res, vol.18, pp.127-136, 2010.

F. Bene, K. Tessmar-raible, and J. Wittbrodt, Direct interaction of geminin and Six3 in eye development, Nature, vol.427, pp.745-749, 2004.

L. Luo, X. Yang, Y. Takihara, H. Knoetgen, and M. Kessel, The cell-cycle regulator geminin inhibits Hox function through direct and polycomb-mediated interactions, Nature, vol.427, pp.749-753, 2004.

D. T. Pak, M. Pflumm, I. Chesnokov, D. W. Huang, R. Kellum et al., Association of the origin recognition complex with heterochromatin and HP1 in higher eukaryotes, Cell, vol.91, pp.311-323, 1997.

T. Triolo and R. Sternglanz, Role of interactions between the origin recognition complex and SIR1 in transcriptional silencing, Nature, vol.381, pp.251-253, 1996.

K. Yankulov, I. Todorov, P. Romanowski, D. Licatalosi, K. Cilli et al., MCM proteins are associated with RNA polymerase II holoenzyme, Mol. Cell. Biol, vol.19, pp.6154-6163, 1999.

D. Dominguez-sola, C. Y. Ying, C. Grandori, L. Ruggiero, B. Chen et al., Non-transcriptional control of DNA replication by c-Myc, Nature, vol.448, pp.445-451, 2007.

B. Miotto and Y. Graba, Control of DNA replication: a new facet of Hox proteins?, BioEssays, vol.32, pp.800-807, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-02132581

P. Rimmele, J. Komatsu, P. Hupe, C. Roulin, E. Barillot et al., Spi-1/PU.1 oncogene accelerates DNA replication fork elongation and promotes genetic instability in the absence of DNA breakage, Cancer Res, vol.70, pp.6757-6766, 2010.

C. M. Koch, R. M. Andrews, P. Flicek, S. C. Dillon, U. Karaoz et al., The landscape of histone modifications across 1% of the human genome in five human cell lines, Genome Res, vol.17, pp.691-707, 2007.

H. Xi, H. P. Shulha, J. M. Lin, T. R. Vales, Y. Fu et al., Identification and characterization of cell type-specific and ubiquitous chromatin regulatory structures in the human genome, PLoS Genet, vol.3, p.136, 2007.

G. I. Dellino, D. Cittaro, R. Piccioni, L. Luzi, S. Banfi et al., Genome-wide mapping of human DNA-replication origins: levels of transcription at ORC1 sites regulate origin selection and replication timing, Genome Res, vol.23, pp.1-11, 2012.

I. Hiratani, T. Ryba, M. Itoh, T. Yokochi, M. Schwaiger et al., Global reorganization of replication domains during embryonic stem cell differentiation, PLoS Biol, vol.6, p.245, 2008.

D. M. Gilbert, Replication timing and transcriptional control: beyond cause and effect, Curr. Opin. Cell Biol, vol.14, pp.377-383, 2002.

I. Hiratani, S. Takebayashi, J. Lu, and D. M. Gilbert, Replication timing and transcriptional control: beyond cause and effect-part II, Curr. Opin. Genet. Dev, vol.19, pp.142-149, 2009.

M. Mechali, Eukaryotic DNA replication origins: many choices for appropriate answers, Nat. Rev. Mol. Cell Biol, vol.11, pp.728-738, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00529311

J. Mendez and B. Stillman, Chromatin association of human origin recognition complex, cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis, Mol. Cell. Biol, vol.20, pp.8602-8612, 2000.

E. Schwob, C. De-renty, V. Coulon, T. Gostan, C. Boyer et al., Use of DNA combing for studying DNA replication in vivo in yeast and mammalian cells, Methods Mol. Biol, vol.521, pp.673-687, 2009.

J. Yang, L. O'donnell, D. Durocher, and G. W. Brown, RMI1 promotes DNA replication fork progression and recovery from replication fork stress, Mol. Cell. Biol, vol.32, pp.3054-3064, 2012.

V. Basile, R. Mantovani, and C. Imbriano, DNA damage promotes histone deacetylase 4 nuclear localization and repression of G2/M promoters, via p53 C-terminal lysines, J. Biol. Chem, vol.281, pp.2347-2357, 2006.

S. Belluti, V. Basile, P. Benatti, E. Ferrari, G. Marverti et al., Concurrent inhibition of enzymatic activity and NF-Y-mediated transcription of topoisomeraseIIalpha by bis-DemethoxyCurcumin in cancer cells, Cell Death Dis, vol.4, p.756, 2013.

B. Miotto and K. Struhl, HBO1 histone acetylase is a coactivator of the replication licensing factor Cdt1, Genes Dev, vol.22, pp.2633-2638, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-02132585

P. J. Gillespie, A. Gambus, and J. J. Blow, Preparation and use of Xenopus egg extracts to study DNA replication and chromatin associated proteins, Methods, vol.57, pp.203-213, 2012.

C. Imbriano, A. Gurtner, F. Cocchiarella, S. D. Agostino, V. Basile et al., Direct p53 transcriptional repression: in vivo analysis of CCAAT-containing G2/M promoters, Mol. Cell. Biol, vol.25, pp.3737-3751, 2005.

R. Mantovani, X. Y. Li, U. Pessara, R. Hooft-van-huisjduijnen, C. Benoist et al., Dominant negative analogs of NF-YA, J. Biol. Chem, vol.269, pp.20340-20346, 1994.

W. T. Poh, G. S. Chadha, P. J. Gillespie, P. Kaldis, and J. J. Blow, Xenopus Cdc7 executes its essential function early in S phase and is counteracted by checkpoint-regulated protein phosphatase 1, Open Biol, vol.4, p.130138, 2014.

N. Sadoni, S. Langer, C. Fauth, G. Bernardi, T. Cremer et al., Nuclear organization of mammalian genomes. Polar chromosome territories build up functionally distinct higher order compartments, J. Cell Biol, vol.146, pp.1211-1226, 1999.
DOI : 10.1083/jcb.146.6.1211

H. Nakayasu and R. Berezney, Mapping replicational sites in the eucaryotic cell nucleus, J. Cell Biol, vol.108, pp.1-11, 1989.

K. W. Dunn, M. M. Kamocka, and J. H. Mcdonald, A practical guide to evaluating colocalization in biological microscopy, Am. J. Physiol. Cell Physiol, vol.300, pp.723-742, 2011.

F. Coustry, S. N. Maity, and B. De-crombrugghe, Studies on transcription activation by the multimeric CCAAT-binding factor CBF, J. Biol. Chem, vol.270, pp.468-475, 1995.

F. Coustry, S. N. Maity, S. Sinha, and B. De-crombrugghe, The transcriptional activity of the CCAAT-binding factor CBF is mediated by two distinct activation domains, one in the CBF-B subunit and the other in the CBF-C subunit, J. Biol. Chem, vol.271, pp.14485-14491, 1996.

S. Sinha, S. N. Maity, J. Lu, and B. De-crombrugghe, Recombinant rat CBF-C, the third subunit of CBF/NFY, allows formation of a protein-DNA complex with CBF-a and CBF-B and with yeast HAP2 and HAP3, Proc. Natl. Acad. Sci. U. S. A, vol.92, pp.1624-1628, 1995.

B. Miotto and K. Struhl, HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by geminin, Mol. Cell, vol.37, pp.57-66, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-02132583

A. Gambus, R. C. Jones, A. Sanchez-diaz, M. Kanemaki, F. Van-deursen et al., GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks, Nat. Cell Biol, vol.8, pp.358-366, 2006.

J. J. Blow, X. Q. Ge, and D. A. Jackson, How dormant origins promote complete genome replication, Trends Biochem. Sci, vol.36, pp.405-414, 2011.
DOI : 10.1016/j.tibs.2011.05.002

URL : http://europepmc.org/articles/pmc3329722?pdf=render

R. C. Alver, G. S. Chadha, and J. J. Blow, The contribution of dormant origins to genome stability: from cell biology to human genetics, DNA Repair (Amst), vol.19, pp.182-189, 2014.

R. Elkon, C. Linhart, R. Sharan, R. Shamir, and Y. Shiloh, Genome-wide in silico identification of transcriptional regulators controlling the cell cycle in human cells, Genome Res, vol.13, pp.773-780, 2003.

H. Goodarzi, O. Elemento, and S. Tavazoie, Revealing global regulatory perturbations across human cancers, Mol. Cell, vol.36, pp.900-911, 2009.
DOI : 10.1016/j.molcel.2009.11.016

URL : https://doi.org/10.1016/j.molcel.2009.11.016

J. Newport and M. Kirschner, A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription, Cell, vol.30, pp.687-696, 1982.
DOI : 10.1016/0092-8674(82)90273-2

J. J. Blow and R. A. Laskey, Initiation of DNA replication in nuclei and purified DNA by a cell-free extract of Xenopus eggs, Cell, vol.47, pp.577-587, 1986.

Q. Li, M. Herrler, N. Landsberger, N. Kaludov, V. V. Ogryzko et al., Xenopus NF-Y pre-sets chromatin to potentiate p300 and acetylation-responsive transcription from the Xenopus hsp70 promoter in vivo, EMBO J, vol.17, pp.6300-6315, 1998.

J. J. Blow, Control of chromosomal DNA replication in the early Xenopus embryo, EMBO J, vol.20, pp.3293-3297, 2001.

J. A. Wohlschlegel, S. K. Dhar, T. A. Prokhorova, A. Dutta, and J. C. Walter, Xenopus Mcm10 binds to origins of DNA replication after Mcm2-7 and stimulates origin binding of Cdc45, vol.9, pp.233-240, 2002.

Y. Kubota, Y. Takase, Y. Komori, Y. Hashimoto, T. Arata et al., A novel ring-like complex of Xenopus proteins essential for the initiation of DNA replication, Genes Dev, vol.17, pp.1141-1152, 2003.

H. Toyoshima and T. , Hunter, p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21, Cell, vol.78, pp.67-74, 1994.

S. Tada, A. Li, D. Maiorano, M. Mechali, and J. J. Blow, Repression of origin assembly in metaphase depends on inhibition of RLF-B/Cdt1 by geminin, Nat. Cell Biol, vol.3, pp.107-113, 2001.

D. Gong, J. Qi, V. Arumugaswami, R. Sun, and H. Deng, Identification and functional characterization of the left origin of lytic replication of murine gammaherpesvirus 68, Virology, vol.387, pp.285-295, 2009.

B. Song and C. S. Young, Functional analysis of the CAAT box in the major late promoter of the subgroup C human adenoviruses, J. Virol, vol.72, pp.3213-3220, 1998.

C. Bauerschmidt, S. Pollok, E. Kremmer, H. P. Nasheuer, and F. Grosse, Interactions of human Cdc45 with the Mcm2-7 complex, the GINS complex, and DNA polymerases delta and epsilon during S phase, Genes to cells: devoted to molecular and cellular mechanisms, vol.12, pp.745-758, 2007.

R. Hooft-van-huijsduijnen, X. Y. Li, D. Black, H. Matthes, C. Benoist et al., Coevolution from yeast to mouse: cDNA cloning of the two NF-Y (CP-1/CBF) subunits, EMBO J, vol.9, pp.3119-3127, 1990.

Y. Zou, Y. Liu, X. Wu, and S. M. Shell, Functions of human replication Protein A (RPA): from DNA replication to DNA damage and stress responses, J. Cell. Physiol, vol.208, pp.267-273, 2006.

V. Garcia, K. Furuya, and A. M. Carr, Identification and functional analysis of TopBP1 and its homologs, DNA Repair (Amst), vol.4, pp.1227-1239, 2005.

D. Dolfini, R. Gatta, and R. Mantovani, NF-Y and the transcriptional activation of CCAAT promoters, Crit. Rev. Biochem. Mol. Biol, vol.47, pp.29-49, 2012.

D. M. Gilbert, Replication origin plasticity, Taylor-made: inhibition vs recruitment of origins under conditions of replication stress, Chromosoma, vol.116, pp.341-347, 2007.

C. Borestrom, H. Zetterberg, K. Liff, and L. Rymo, Functional interaction of nuclear factor y and sp1 is required for activation of the epstein-barr virus C promoter, J. Virol, vol.77, pp.821-829, 2003.

A. Gurtner, I. Manni, P. Fuschi, R. Mantovani, F. Guadagni et al., Requirement for down-regulation of the CCAAT-binding activity of the NF-Y transcription factor during skeletal muscle differentiation, Mol. Biol. Cell, vol.14, pp.2706-2715, 2003.