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Abstract

Tumor necrosis factor (TNF) receptor-associated factor 4 (TRAF4) is frequently overexpressed in carcinomas, suggesting a
specific role in cancer. Although TRAF4 protein is predominantly found at tight junctions (TJs) in normal mammary epithelial
cells (MECs), it accumulates in the cytoplasm of malignant MECs. How TRAF4 is recruited and functions at TJs is unclear.
Here we show that TRAF4 possesses a novel phosphoinositide (PIP)-binding domain crucial for its recruitment to TJs. Of
interest, this property is shared by the other members of the TRAF protein family. Indeed, the TRAF domain of all TRAF
proteins (TRAF1 to TRAF6) is a bona fide PIP-binding domain. Molecular and structural analyses revealed that the TRAF
domain of TRAF4 exists as a trimer that binds up to three lipids using basic residues exposed at its surface. Cellular studies
indicated that TRAF4 acts as a negative regulator of TJ and increases cell migration. These functions are dependent from its
ability to interact with PIPs. Our results suggest that TRAF4 overexpression might contribute to breast cancer progression by
destabilizing TJs and favoring cell migration.
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Introduction

Tumor necrosis factor receptor-associated factor 4 (TRAF4) was

originally identified as a gene overexpressed in breast carcinoma

[1,2]. Interestingly, TRAF4 overexpression is not restricted to

breast cancer and extends to a variety of different carcinomas

[3,4]. TRAF4 belongs to the TRAF family that is composed of

seven members in humans [5,6]. Among the seven TRAF family

members, TRAF4 is one of the most conserved during evolution

[7]. Indeed, a TRAF4 ortholog has already been identified in snail

fur (Hydractinia achinata), a cnidaria [8]. Moreover, the unique

TRAF protein in the worm shares a higher homology with human

TRAF4 than with other human TRAF proteins [9]. Furthermore,

one of the three fly TRAF proteins, dTRAF1, shares the highest

homology with human TRAF4 [9,10]. In line with an essential

and conserved biological function of TRAF4, flies that carry null-

alleles of TRAF4 have many developmental abnormalities, leading

to lethality before the pupal stage [11,12]. Likewise, TRAF4

deficiency in mice was lethal at the embryonic stage in

approximately one third of the homozygote mutants [13]. All

surviving animals exhibited multiple defects including trachea

alteration and various nonfully penetrant phenotypes involving the

axial skeleton and the central nervous system [13,14]. Surviving

adult TRAF4-deficient mice also exhibited ataxia, associated with

myelination alteration [15]. Together, these various genetic

models suggest that TRAF4 has an essential function conserved

in most, if not all, pluricellular animals.

TRAF4 encodes a 53 kDa adaptor protein with multiple

subcellular localizations. Indeed, cytoplasmic, nuclear, and mem-

brane localizations have been described in the literature [1,16,17].

Of interest, the subcellular localization of TRAF4 is altered in

cancers. While in normal breast tissue the protein is predomi-

nantly localized in the plasma membrane [18], more precisely in

tight junctions (TJs) present at the apical membrane of polarized

epithelial cells [19], in cancer samples the protein can be localized

either in the cytoplasm and/or in the nucleus of cancer epithelial

cells [1,3,16]. Until recently the implication of these multiple

localizations were unclear. A recent report shed light into the

significance of the nuclear localization of TRAF4 in breast cancers

[20]. This study indicated that TRAF4 nuclear localization in
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breast tumors was associated with poor survival in breast cancer

patients after adjuvant therapy. Moreover, this report showed that

TRAF4 promotes p53 protein destabilization in the nucleus of

cancer cells and contributes to resistance to cytotoxic stress in

cancer cells [20]. To date, the function of TRAF4 in TJs and in

the cytoplasm remains unclear. Many lines of evidence indicate

that TRAF4 functions in the organization and patterning of the

cell cortex [12,21]. TRAF4 is required for the polarized trafficking

of NADPH oxidase to filopodia in migrating endothelial cells

[22,23]. In the fly, TRAF4 can interact with proteins involved in

asymmetric division [21] and functions in the establishment of the

junctional architecture of mesodermal cells [12]. In the mouse

nervous system, TRAF4 deficiency altered the formation and/or

stability of axoglial and interglial junctions [15]. Collectively, all

these data indicate that TRAF4 might exert a function related to

cell junctions and polarity [24]. However, TRAF4 appears to

function in a cell-specific manner, making its functional charac-

terization difficult. While TRAF4 is ubiquitously expressed at a

basal level, there exists a spatial and temporal up-regulation of

TRAF4 gene expression during specific developmental stages

[25,26]. For example, during gastrulation in frogs, mRNA

encoding TRAF4 and one of its interacting partners SMURF1

become enriched in the neural plate and neural crest cells. In these

cells, both TRAF4 and SMURF1 are essential for proper neural

crest development and neural plate morphogenesis [25]. In human

mammary epithelial cells (MECs), the role of TRAF4 in TJs

remains unclear. However, we showed previously that this

localization was a highly dynamic process, supporting the notion

that TRAF4 might relay signals from the cell membrane to the

cytoplasm, and possibly the nucleus [17]. Given the recently

established role of nuclear TRAF4 in the destabilization of the

tumor suppressor p53 protein [20], it is now necessary to

understand how TRAF4 subcellular localization in the mammary

epithelium is regulated under physiopathological conditions. To

address this, we explored the molecular determinants involved in

its subcellular localization at the plasma membrane and in TJs of

MECs. We also directly addressed the function of TRAF4 in the

formation and maintenance of TJs in polarized cells. Finally,

having established that TRAF4 is a negative regulator of TJs in

breast cells, we have explored its contribution to cell motility.

Results

TRAF4 Is a Negative Regulator of TJs
MECs form ducts and acini with an established apicobasal

polarity [27]. Adhesion and TJ formation are instrumental to the

establishment of this polarity [28,29]. In polarized MECs, TRAF4

is mainly found in TJs [17], suggesting a specific function of the

protein in the formation and/or dissociation of TJs. To address the

function of TRAF4 in TJs, we used the human immortalized

normal MEC model, MCF10A [30]. Monolayers of MCF10A

provide a good system to study TJs because at confluence they

form clusters of polarized cells exhibiting TJs and they can be used

to measure the contribution of a given gene in the formation and/

or stabilization of TJs [31,32]. In practice, quantification of cell

clusters exhibiting a continuous membrane-associated ZO-1

staining indicates the extent of cells making TJs. This cell system

has been successfully used to demonstrate TJ alterations following

long-term TGF-b treatment [31]. To study the role of TRAF4 on

TJs, we down-regulated its expression in MCF10A cells using a

shRNA strategy (Figure 1A). In cells stably expressing a shRNA

specific for TRAF4 (MCF10A/shT4), TRAF4 expression was

reduced to less than 10% compared to parental MCF10A cells and

to cells expressing a control shRNA (MCF10A/shCtrl). Next,

MCF10A/shT4, MCF10A/shCtrl, and MCF10A parental cells

were plated at the same density, and 48 h later, cell monolayers

were fixed and stained for the TJ marker ZO-1 (Figure 1B). The

relative number of cells harboring TJs was then measured. Cells

harboring TJs were defined as cells with an enclosed ring of

contiguous apical ZO-1 staining. Compared to parental MCF10A

and to MCF10A/shCtrl cell lines, TRAF4 silencing was associated

with a 2-fold increase in cells harboring TJs (Figure 1B,E).

To support the role of TRAF4 expression on TJs, we performed

the complementary experiment in which TRAF4 was overex-

pressed in MCF10A cells. In cells stably expressing the protein

(MCF10A/TRAF4), TRAF4 was increased over 6-fold as

compared to parental MCF10A cells and to cells transduced with

the empty vector (MCF10A/pBABE). The presence of TJ was

assayed in these different cell lines as described above; compared

to parental MCF10A cells and to MCF10A/pBABE control cells,

TRAF4 overexpression resulted in a 2-fold decrease in TJ-

harboring cells (Figure 1C,E). To further substantiate the role of

TRAF4 on TJs, we restored TRAF4 expression in MCF10A/shT4

cells (MCF10A/shT4+TRAF4) using an expression system insen-

sitive to shT4-mediated down-regulation. TRAF4 expression was

efficiently restored as the protein was expressed over six times

higher than in parental cells (Figure 1A). MCF10A/shT4 cells

transduced with the empty vector (pBABE) served as a negative

control (MCF10A/shT4+pBABE). These cell lines were then

assayed for the formation of TJs using ZO-1 staining on confluent

monolayers. Similarly to TRAF4-silenced MCF10A cells, in the

absence of rescue (MCF10A/shT4+pBABE), the number of TJs

was two times higher than in parental and nonsilenced cells

(Figure 1D,E). Remarkably, compared to parental MCF10A cells,

rescued cells (MCF10A/shT4+TRAF4) had a 2-fold decrease in

TJs similar to TRAF4 overexpressing cells (MCF10A/TRAF4)

(Figure 1D,E). Thus restoring TRAF4 expression rescues the TJ

phenotype induced by its silencing.

To study whether TRAF4 might regulate the expression level of

proteins involved in TJs, adherens junctions, and desmosomes,

levels of ZO-1, E-cadherin, beta-catenin, and desmoplakin were

measured in the different cell lines by immunoblotting. Modulat-

Author Summary

Tumor necrosis factor (TNF) receptor-associated factor 4,
also known as TRAF4, is an unusual member of the TRAF
protein family. While TRAFs are primarily known as
regulators of inflammation, antiviral responses, and apop-
tosis, research on TRAF4 has identified its involvement in
development and cancer. Importantly TRAF4 overexpres-
sion has been associated with a poor prognosis in breast
cancers. TRAF4 has multiple subcellular localizations: to
the plasma membrane in tight junctions (TJs), cytoplasmic
and nuclear. The recruitment mechanisms and the
functional impact of these distinct localizations are not
completely understood. Here we investigate how TRAF4 is
recruited to TJs and its involvement in cell–cell contacts in
mammary epithelial cells (MECs). We show that the TRAF
domain of all TRAFs contains a lipid binding module, and
that TRAF4 uses this domain to form a trimeric complex
that associates with phosphoinositides at the plasma
membrane. Moreover this interaction is necessary for its
recruitment to TJs. Additionally, we show that through its
interaction with lipids TRAF4 delays TJ assembly and
increases cell migration. We propose that TRAF4 has an
important function in cancer progression by destabilizing
TJs and favoring cell migration.

The TRAF Domain Binds Phosphoinositides
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ing TRAF4 expression did not modify significantly ZO-1, E-

cadherin, beta-catenin, and desmoplakin protein levels (Figure

S1A). In addition, immunofluorescence of endogenous beta-

catenin showed that TRAF4 does not affect the membrane-bound

beta-catenin pool, suggesting that TRAF4 primarily targets TJs

(Figure S1B–D).

To know whether TRAF4 acts on TJ assembly, we next used

the ‘‘calcium switch’’ model in MCF7 cells. This assay involves

reversible disruption of epithelial junctions by extracellular

calcium removal followed by a rapid reassembly triggered by

calcium repletion [33]. MCF7 cells form well-defined TJs in tissue

culture conditions [34] and endogenous TRAF4 is predominantly

localized at TJs [17]. To address the role of TRAF4 on TJ

assembly, we generated a TRAF4-silenced cell line in MCF7 cells

using a shRNA strategy. Compared with parental (MCF7) and

control (MCF7/shCtrl) cells, TRAF4 silencing (MCF7/shT4)

resulted in a 90% reduction in protein levels (Figure S2A). We next

examined if TRAF4 silencing affected reassembly of MCF7 TJs

using the ‘‘calcium switch’’ assay. TRAF4 down-regulation

accelerated the reassembly of TJs, as shown by the appearance

of continuous junctional labeling of ZO-1 (Figure S2B). After 3, 5,

and 7 h of calcium repletion, TRAF4-silenced cells showed more

formed TJs than parental and control cells (Figure S2B,C). After

20 h of calcium repletion, all cells recovered TJs (Figure S2B).

Moreover, reintroduction of TRAF4 in silenced cells rescued the

phenotype of TRAF4-depleted cells, since cells expressing a sh-

insensitive TRAF4 construct (MCF7/shT4+TRAF4) reassembled

TJs in a kinetic comparable to that of parental MCF7 cells (Figure

S2B,C).

Thus, in the normal MEC MCF10A, TRAF4 negatively

regulates TJs. Moreover, in the malignant MEC MCF7 forming

well-defined TJs, TRAF4 delays the reassembly of TJs. Collec-

tively these data indicate that TRAF4 modulates TJs by delaying

their formation and/or by favoring the dissociation of TJ.

TRAF4 Is a Novel Phosphoinositide Binding Protein
In MECs, TRAF4 was shown to be present at the plasma

membrane in a highly dynamic manner. Indeed fluorescent

recovery after photobleaching (FRAP) experiments showed that

the protein has a short residency time in the membrane. These

experiments supported the notion that TRAF4 is shuttling

between the plasma membrane, the cytoplasm, and possibly the

nucleus [17]. In addition, in flies, TRAF4 was shown to interact

with proteins from TJs, including PAR3 (Partitioning-defective 3)

[21], making this protein a good candidate to explain TRAF4

addressing in junctions. However, in human cells, we failed to find

a direct interaction between TRAF4 and PAR3 (F.A. unpublished

data), suggesting that another mechanism is responsible for

TRAF4 membrane targeting. Of interest, it was shown that

adaptor proteins from TJs, including PAR3 and ZO-1, were

localized to cell membranes via an interaction with membrane

lipids belonging to the phosphoinositide (PIP) family [35,36]. We

thus reasoned that TRAF4 might be targeted to the cell

membrane and possibly TJ by using a similar mechanism. To

address the potential TRAF4 interaction with membrane lipids,

we used an in vitro lipid binding assay called lipid overlay assay

[37]. To this aim, recombinant TRAF4 protein was produced and

purified from E. coli. Recombinant TRAF4 was flanked by two

tags, a Tandem Affinity Purification (TAP)-tag [38] and a 6His-tag

at the amino- and carboxy-terminal parts, respectively (Figure 2A).

The efficiency of the purification was probed by Coomassie blue

staining (Figure 2Ba) and Western blot (Figure 2Bb). Recombinant

proteins were detected using an antibody recognizing the

immunoglobulin-binding domain of protein-A from the TAP

tag. We next tested the direct interaction of recombinant TRAF4

with lipids immobilized on membranes by lipid overlay assay

(Figure 2C). While the control TAP-6His protein did not bind to

any lipid, recombinant TRAF4 did bind to all PIPs and

phosphatidic acid (PA). Interestingly, TRAF4 did not bind to

other negatively charged lipids like phosphatidylserine and

phosphatidylinositol (Figure 2C). Thus, lipid overlay assay showed

that TRAF4 binds PIPs in vitro.

TRAF4 is a modular protein composed of a RING domain,

seven TRAF-type zinc-fingers, and a TRAF domain (Figure 2A)

[24]. To narrow down the domain involved in this binding, we

produced two deletion mutants of TRAF4: one lacking the TRAF

domain and thus only composed of the RING domain and of the

seven zinc fingers (RING-7xZf) and the second one lacking all

domains except the TRAF domain (TRAF) (Figure 2A). While the

RING-7xZf part of the protein showed no detectable binding to

lipids, the TRAF domain showed a lipid-binding profile similar to

the wild-type TRAF4 protein (Figure 2C). This result shows that

the TRAF domain of TRAF4 is responsible for the interaction of

the protein with PIPs.

We next used a different method called native mass spectrom-

etry to show the binding of the TRAF domain with PIPs. This

method is sensitive enough to measure the molecular weight of

lipid–protein complexes and address their stoichiometry [39]. In

this assay, the recombinant TRAF domain in isolation (Figure 2A)

was incubated with a soluble form of PI(3,4,5)P3 and analyzed by

Electrospray Ionisation Time of Flight (ESI-TOF) mass spectrom-

etry (Figure 2D). In absence of lipid, the TRAF domain fused to a

6His tag (TRAF-6His) was detected as a single peak of 67.7 kDa

(Figure 2Da). Consistent with the trimerization property of the

TRAF proteins via the TRAF domain [40], this peak represents

three times the size of the monomeric TRAF domain (22.6 kDa).

When TRAF-6His was incubated with PI(3,4,5)P3 prior to the

ESI-TOF analysis, three additional major peaks were detected

(Figure 2Db). Interestingly, each new peak has a size shift of

,710 Da, which corresponds to the theoretical mass of one

PI(3,4,5)P3 molecule. This indicates that the TRAF domain as a

trimer can directly interact with one to three PI(3,4,5)P3 molecules

(Figure 2D). Altogether, this shows that the recombinant TRAF

domain of TRAF4 is well folded and trimerizes in solution

Figure 1. TRAF4 protein level modulates TJs in confluent MCF10A monolayers. (A) Western-blot analysis of TRAF4 in parental and in
established MCF10A cell lines. To knock down TRAF4, parental MCF10A cells (lane 1) were transduced with a shRNA targeting TRAF4 (MCF10A/shT4,
lanes 3–5); a nonspecific shRNA was used as control (MCF10A/shCtrl, lane 2). To restore TRAF4 expression, MCF10A/shT4 cells were transduced with a
shT4-insensitive vector encoding TRAF4 (MCF10A/shT4+TRAF4, lane 5); the control cell line (MCF10A/shT4+pBABE, lane 4) was transduced with the
empty vector. A gain of function and a control cell line were generated with a TRAF4 expression plasmid (MCF10A/TRAF4, lane 7) or the empty vector
(MCF10A/pBABE, lane 6), respectively. TRAF4 expression levels normalized to actin are indicated. (B–D) The presence of TJs was estimated by ZO-1
staining in the different cell lines of TRAF4 loss of function (B), gain of function (C), and rescue (D) experiments. Left panels are representative confocal
sections of ZO-1 staining (green), and right panels are merges with Hoechst staining (blue). Scale bar, 20 mm. (E) TJ quantification. Score representing
the number of cells with a continuous ZO-1 staining, normalized to parental MCF10A cells (percentage). The number of microscopic fields used for
the quantification is indicated at the bottom of the bar chart. TRAF4 knock-down increased the number of cells with TJs, whereas TRAF4
overexpression had the opposite effect.
doi:10.1371/journal.pbio.1001726.g001
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Figure 2. TRAF4 binds PIPs through its TRAF domain. (A) Schematic representation of the recombinant proteins used in lipid binding assays.
TAP and 6His tags were used for the purification. RING, Zf, and TRAF are conserved structural domains present in the TRAF4 protein. (B) Coomassie
blue staining (a) and Western blot analysis (b) of purified recombinant proteins. The antibody used recognized the immunoglobulin-binding domain
of protein A from the TAP tag. TRAF4 degradation products are indicated by asterisks. (C) Lipid-overlay assay. Left, schematic view of a PIP-strip
membrane. LPA, lysophosphatidic acid; S1P, Sphingosine-1-phosphate; LPC, Lysophosphocholine; PI, Phosphatidylinositol; PI(3)P, PI-(3)-phosphate;
PI(4)P, PI-(4)-phosphate; PI(5)P, PI-(5)-phosphate; PI(3,4)P2, PI-(3,4-)bisphosphate; PI(3,5)P2, PI-(3,5)-bisphosphate; PI(4,5)P2, PI-(4,5)-bisphosphate;
PIP(3,4,5)P3, PI-(3,4,5)-trisphosphate; PA, Phosphatidic acid; PE, Phosphatidylethanolamine; PS, Phosphatidylserine; PC, Phosphatidylcholine. The TAP-
6His recombinant protein served as a negative control. Immunodetection of bound proteins was performed using a TAP-identifying antibody. TAP-
6His and RING-7xZf did not bind to any membrane-coated lipids, while both full-length TRAF4 and the TRAF domain in isolation interacted with all
PIPs and PA. (D) The TRAF domain of TRAF4 binds PIP in solution. Electrospray ionization time-of-flight mass spectrometry deconvoluted spectra of

The TRAF Domain Binds Phosphoinositides

PLOS Biology | www.plosbiology.org 5 December 2013 | Volume 11 | Issue 12 | e1001726



similarly to the TRAF domains of TRAF2 and TRAF6 [40,41]. In

addition, it can bind up to three PI(3,4,5)P3 molecules, thus

suggesting that each TRAF monomer has a binding site for one

PIP molecule.

In addition, the ability of the TRAF domain to interact with

PIPs was measured by direct binding to 100-nm large unilamellar

vesicles (LUVs) by flotation in a sucrose gradient (Figure 2Ea)

[42,43]. All liposome preparations were labeled with a fluorescent

lipid (NBD-PE), which allows for their direct visualization. Three

different liposome preparations were tested: blank (no PIP),

PI(4,5)P2-, and PI(3,4,5)P3-containing LUVs. Liposomes were

first incubated with recombinant proteins, then mixed with

sucrose, and finally allowed to float over this sucrose cushion in

virtue of their lower density. After ultracentrifugation, liposomes

followed by NBD-PE fluorescence were found in the top fraction

of the gradient (Figure 2Eb,c). The control TAP-6His protein was

never associated with liposomes (Figure 2Eb,d). Of interest, in

presence of blank liposomes, the TRAF domain of TRAF4 was

not associated with liposomes and was mainly present in the

bottom fraction of the gradient (Figure 2Ec). In contrast, when

mixed with PI(4,5)P2 or PI(3,4,5)P3-containing liposomes, the

TRAF domain of TRAF4 was predominantly present in the top

fraction in association with liposomes (Figure 2Ec,d). These data

show that the TRAF domain of TRAF4 is able to interact with

PIPs in the context of a biological membrane.

To gain insight about the affinity between the TRAF domain

and PIPs, we performed isothermal titration calorimetry (ITC)

experiments [44]. ITC was done with 16 mM TRAF-6His to

which 500 mM inositol-(1,3,4,5,)-tetrakisphosphate (IP4) were

added incrementally (Figure 2F). In these conditions, the TRAF

domain is a homotrimer and the calculated numbers of IP4

binding sites indicated a 3:1 stoichiometry of IP4 to TRAF-6His

trimer. The lipid binding affinity was then calculated. The

dissociation constant (KD) for one lipid-binding site of the TRAF

domain and one IP4 molecule was 5.68 mM. This magnitude is

consistent with KD found for other PIP interacting proteins from

TJs including PAR3 (KD = 8 mM), ZO-1 (KD = 1.3 mM), and ZO-

2 (KD = 2.6 mM) [35,36].

Altogether, these data show that TRAF4 has the ability to bind

to PIPs and PA. The protein exists as a homotrimer that binds up

to three lipid molecules. This interaction is mediated by the TRAF

domain and the affinity of binding is in the micromolar range,

which is consistent with the KD of other PIP-binding domains

[36,45,46].

The TRAF Domain Is a Novel Bona Fide PIP-Interacting
Domain

Given that the TRAF domain is well conserved within the

TRAF protein family, we reasoned that the other TRAF proteins

might bind PIPs as well. To test this hypothesis, we produced and

purified the TRAF domains of the five other human TRAF

proteins (TRAF1 to 6) in fusion with a TAP and a 6His-tag. As

described before, the purification of these different recombinant

domains was probed by Coomassie blue staining (Figure 3Aa) and

Western blot (Figure 3Ab), and they were tested using a simplified

lipid overlay assay containing a negative control (PE) and the

major plasma membrane localized PIPs, PI(4,5)P2 and

PI(3,4,5)P3. Similar to previous results, the TAP-6His negative

control did not bind to any lipids. Interestingly, the TRAF

domains of the other TRAF paralogs (TRAF1 to TRAF6)

interacted with PI(4,5)P2 and PI(3,4,5)P3 (Figure 3B). To support

this finding, we performed liposome flotation assays with TRAF5

and TRAF6 TRAF domains. Consistent with lipid overlay assays,

the TRAF domains of TRAF5 and TRAF6 were associated with

PI(4,5)P2- and PI(3,4,5)P3-containing liposomes and not with

blank liposomes (Figure 3C). This finding indicates that the TRAF

domains of TRAF5 and TRAF6 have the ability to interact with

PIPs in the context of a biological membrane. Interestingly, using

lipid overlay we also found that the TRAF domain of the fly

TRAF4, dTRAF1, interacts with PIPs (Figure S3).

Together, these experiments show that the TRAF domain is a

bona fide PIP-interacting protein domain. They provide a novel link

between the signaling adaptor proteins from the TRAF family and

lipids.

Structural Insight on PIP–TRAF Domain Interaction
To get mechanistic insights about the interaction between the

TRAF domain and PIPs, we determined the crystal structure of

the TRAF domain of human TRAF4 (PDB 3ZJB). The structure

was resolved to 1.85 Å by molecular replacement using the

structure of human TRAF2 (PDB ID 1CA9; [40]) (Table S1). The

structure was refined to convergence (Rwork = 0.1632,

Rfree = 0.1995) and includes residues 283–470 of the TRAF

domain (Figure 4A). No evidence was seen, however, for the

presence of IP4 in the electron density maps. The most striking

structural feature of the TRAF domain is the formation of a

mushroom-shaped trimer with the coiled-coil domain (TRAF-N)

as the stalk and the TRAF-C domain as the cap (Figure 4A), which

is similar to the described structure of the TRAF domain of

TRAF2 [40] and TRAF5 [47]. The structural architecture of the

TRAF-C domain contains an eight-stranded antiparallel b-

sandwich and a three turn helix present in the crossover

connection between two b-strands as previously described for

TRAF2, TRAF3, and TRAF6 proteins [48].

The structure of the TRAF domain was used to further

characterize structural determinants involved in the binding with

PIPs and to seek out TRAF4 mutants defective in this binding.

Several protein domains including PH (pleckstrin homology), PX

(phox homology), ENTH (Epsin N-terminal homology), FYVE

(Fab1, YotB, Vac1p, and EEA1), and PDZ (PSD95, Dlg1, and

the TRAF domain of TRAF4 in the absence (a) and in the presence (b) of PI(3,4,5)P3-diC4. In isolation and in the absence of lipid, the TRAF domain is a
trimer (a). In the presence of PIP, three additional peaks corresponding to one to three bound lipids are detected (b). Theoretical masses of the TRAF
trimer and PI(3,4,5)P3-diC4 are 67.678 kDa and 0.714 kDa, respectively. (E) Liposomes flotation assay. a, schematic representation of the liposome
flotation assay. Blank liposomes, PI(4,5)P2-containing liposomes, and PI(3,4,5)P3-containing liposomes were incubated with recombinant proteins,
and liposome/protein-mixed fractions were separated by sucrose gradient ultracentrifugation. Binding of recombinant control TAP-6HIS (b) and TRAF
domain of TRAF4 (c) to liposomes using membrane flotation assay. Fluorescent analyses (dot blot) of NBD-PE indicated that blank and PIP-containing
liposomes were present in the top fraction. The presence of recombinant proteins in each fraction was detected by Western blot using anti-His
antibody and quantified by densitometry-analysis using ImageJ software. The control TAP-6His was predominantly detected in the bottom fraction
(b). In contrast the centrifugation profile of the TRAF4-TRAF domain was modified in the presence of PIP-containing liposomes (c). Indeed when
mixed with blank liposomes, the TRAF domain was present in the bottom fraction, while in the presence of PI(4,5)P2) and PI(3,4,5)P3-containing
liposomes, the TRAF domain was present in the top fraction. (F) Affinity of TRAF4 for PIP was measured by ITC. Titration was performed with 16 mM
TRAF-6His recombinant protein, to which 500 mM of inositol-(1,3,4,5)-tetrakisphosphate were added incrementally. The TRAF domain of TRAF4 binds
IP4 with a KD of 5.68 mM.
doi:10.1371/journal.pbio.1001726.g002

The TRAF Domain Binds Phosphoinositides

PLOS Biology | www.plosbiology.org 6 December 2013 | Volume 11 | Issue 12 | e1001726



ZO-1) domains bind PIPs [49]. These evolutionarily unrelated

domains have in common the presence of at least two positively

charged residues, lysine and/or arginine, directly interacting with

PIPs [50]. Eleven lysines and 15 arginines are present within the

TRAF domain of TRAF4. To identify critical residues for PIP

binding within TRAF4, we focused on positively charged residues

present at the surface of the TRAF domain (Figure S4). Eight

positively charged residues—K313, R319/320, K345, R384/

R385, K400, K419, R452, and R459 (Figure S4)—were selected

and mutated independently into glutamic acid to produce and

purify the corresponding recombinant proteins in E. coli

(Figure 4B). These mutants were then tested by lipid overlay

assay using a simplified lipid-coated membrane (Figure 4C). While

six out of the eight mutants still bound PIPs (Figure 4C), the

K313E and K345E TRAF4 mutants bound poorly and not at all

to PIPs, respectively (Figure 4C). To exclude the possibility that

the loss of PIP binding of both mutants was due to structural

alterations, we checked their folding by circular dichroism

spectroscopy, a method allowing the determination of protein

secondary structures [51]. The near far-UV CD spectra of the two

mutants were highly similar to that of the wild-type (WT) TRAF

domain (Figure 4D), indicating that the K313E and K345E

mutations did not affect the TRAF domain secondary structure.

We also verified that the overall structure of the K345E mutant

was unaffected using gel filtration and dynamic light scattering and

showed that this mutant had an organization similar to the WT

protein corresponding to a soluble trimer (Figure S5). This

mutagenesis study showed that two positive amino acids, lysine

313 and lysine 345, are contributing and essential residues for the

binding of TRAF4 to PIPs, respectively.

We next used this mutant analysis to build a model representing

the binding of the fully deprotonated PI(3,4,5)P3-diC4 to the

TRAF domain of TRAF4 (Figure 5). The GOLD program was

used; indeed, this software is an automated ligand docking

program broadly used to model ligand–protein binding [52].

Hydrogen bonding of the ligand to lysines 313 and 345 atoms was

set as a prerequisite. In the model, which was further refined by

energy minimization of the fully hydrated protein–ligand complex,

the PI(3,4,5)P3-diC4 molecule binds to the TRAF domain at the

interface between two protomers (Figure 5). Indeed, the lipid

interacts with lysine 313 from one protomer and lysine 345 from

the adjacent protomer. Lysine 313 directly interacts with both

phosphates at positions 3 and 4 of the PI(3,4,5)P3-diC4, whereas

lysine 345 only binds the phosphate at position 5 (Figure 5B). This

model highlighted the presence of two other interacting residues,

arginine 297, which interacts with the phosphate at position 4, and

tyrosine 338, which binds to the phosphate at position 5.

Interestingly, it has been reported in the literature that PIP-

binding domains must have an aromatic residue (Tyr or His) that

interacts with the lipid in addition to basic residues [50].

Figure 3. The PIP-binding ability is conserved through the TRAF family. (A) Coomassie blue staining (a) and Western blot analysis (b) of
purified recombinant TRAF domains from the TRAF family. The antibody used recognized the immunoglobulin-binding domain of protein A from the
TAP tag. (B) Lipid-overlay assay of TRAF domains from the TRAF family. Left, schematic view of a simplified PIP-strip. In this assay, the TAP-6His and
the TRAF of TRAF4 are used as negative and positive control, respectively. Immunodetection of membrane-bound proteins was performed as
described in Figure 2C. All TRAF domains from the TRAF family bind to PIPs. (C) (a) Binding of recombinant TRAF domains of TRAF4, TRAF5, and
TRAF6 to liposomes was analyzed using liposome flotation assay as in Figure 2E. The control TAP-6His is unable to float in the presence of control and
PIP-containing liposomes. In contrast, recombinant TRAF domains of TRAF5 and TRAF6 floated specifically when bound to PIP-enriched liposomes.
(b) The quantification of proteins present in the different fractions was performed by Western blot and densitometry using ImageJ software.
doi:10.1371/journal.pbio.1001726.g003

The TRAF Domain Binds Phosphoinositides

PLOS Biology | www.plosbiology.org 7 December 2013 | Volume 11 | Issue 12 | e1001726



Altogether, these results show that TRAF4 is a novel PIP-binding

protein that uses the TRAF domain, a mushroom-shaped trimer

fold, to bind up to three lipid molecules.

The TRAF Domain of TRAF4 Is Recruited at the Plasma
Membrane Via Its Interaction with PIPs

Even though they are quantitatively minor components of

membranes, PIPs play a crucial role in cellular compartmental-

ization and in protein targeting [49,53]. We hypothesized that

owing to its affinity for PIPs, the TRAF domain would be targeted

to PIP-enriched membranes. First, we compared the subcellular

localization of the full-length TRAF4 protein to that of the TRAF

domain in isolation in MCF7 MECs. To this aim, we expressed

EYFP-tagged full-length TRAF4 or the TRAF domain of TRAF4

in MCF7 and labeled them with the TJ marker ZO-1 (Figure 6A).

Consistent with a previous report [17], TRAF4 is mainly localized

in TJs (Figure 6Aa). Strikingly, in isolation, the TRAF domain was

Figure 4. TRAF4-PIP binding involves lysines K313 and K345. (A) Ribbon drawing of the mushroom-shaped trimeric TRAF domain of human
TRAF4. Three-fold axis vertical and into the page are shown in (a) and (b), respectively. The three TRAF monomers are colored in magenta, cyan, and
green, respectively. The b-sheet regions (TRAF-C) exhibited proper three-fold symmetry. (B) Coomassie staining (upper panel) and Western blot
analysis (bottom panel) of recombinant purified WT and mutant TRAF domains of TRAF4. Mutated residues are indicated on the top. The antibody
used recognized the immunoglobulin-binding domain of protein A from the TAP tag. (C) Lipid-overlay assay of TRAF4 TRAF domain mutants. Left,
schematic view of a simplified PIP strip. In this assay, the TAP-6His tag and the WT TRAF domain are used as a negative and positive control,
respectively. Immunodetection of membrane-bound proteins was performed as described in Figure 2C. Mutagenesis of conserved basic residues
showed that replacement of lysines 313 and 345 by a glutamic acid decreases and abolishes binding to PIPs, respectively. (D) Structural integrities of
WT and mutant TRAF domains of TRAF4 were analyzed by circular dichroism. Replacement of lysines 313 and 345 with a glutamic acid did not affect
the secondary structure of the corresponding mutant TRAF domains.
doi:10.1371/journal.pbio.1001726.g004
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distributed homogenously along the plasma membrane and was

not enriched in TJs (Figure 6Ab). A variety of PIP species can be

found along cellular membranes. We next looked at whether the

localization of specific PIPs could explain the recruitment of the

TRAF4-TRAF domain all along the plasma membrane in MCF7

cells. Two major plasma membrane PIPs, PI(4,5)P2 and

PI(3,4,5)P3, can be localized using specific probes, the GFP-

tagged PH domain of phospholipase Cd (PH-PLCd) and the GFP-

tagged PH domain of Akt (PH-Akt), respectively [54,55]. PI(4,5)P2

and PI(3,4,5)P3 mark the apical and basolateral membranes,

respectively [56,57]. We therefore analyzed the localization of the

TRAF domain with respect to the subcellular distribution of

PI(4,5)P2 and PI(3,4,5)P3 in MCF7 cells. Both the PH-PLCd and

the PH-Akt probes colocalized with the TRAF-Cherry protein

(Figure 6B), indicating that in isolation the TRAF domain of

TRAF4 is localized in both PI(4,5)P2- and PI(3,4,5)P3-enriched

regions that include most of the plasma membrane.

The co-localization of the TRAF domain with the major plasma

membrane PIPs suggests that it is recruited to membranes owing

to its interaction with PIPs. To test this hypothesis, we performed a

BAR (Bin-Amphiphysin-Rvs) domain-induced membrane tubula-

tion assay [58]. In this assay, membrane tubes are induced in the

cytoplasm of COS-7 cells by the expression of the BAR domain of

BIN1 (Figure 6C) [58]. Moreover, by using the isolated BAR

domain and a fusion between the BAR and the PI domains of

BIN1 protein, one can initiate the formation of numerous

intracytoplasmic naked- and PI(4)P/PI(4,5)P2-decorated mem-

brane tubes, respectively. To calibrate this assay, we first studied

Figure 5. Modeling of the PIP3-diC4 binding onto the TRAF domain of TRAF4. (A) Model of PIP3-diC4 binding onto the TRAF domain of
TRAF4 in ribbon drawing (a) and surface (b) representations. The PIP3-diC4 is bound in a pocket at the interface between two different TRAF
monomers. (B) PIP3-diC4-interacting residues and PIP3-diC4 ligand are depicted in stick models. Phosphate, nitrogen, and oxygen atoms are colored
in orange, blue, and red, respectively. Hydrogen bond interactions are shown as dashed lines. In this model, three basic residues (R297, K313, and
K345) and one aromatic residue (Y338) interact directly with the lipid.
doi:10.1371/journal.pbio.1001726.g005
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Figure 6. K313 is contributing and K345 is essential to the plasma membrane recruitment of the TRAF domain. (A) Colocalization of
the complete TRAF4 protein and of the TRAF domain in isolation with the TJ protein ZO-1 in MCF7 cells. Cells transiently transfected with YFP-tagged
(green) complete TRAF4 protein (a) and TRAF domain (b) were labeled for endogenous ZO-1 (red) and DNA (nuclei in blue). Confocal sections are
shown together with xz- and yz-scans. Schematic representation of the localization of the EYFP-tagged proteins is presented at the bottom. TRAF-
EYFP exhibited recruitment all along the plasma membrane, whereas TRAF4-EYFP is specifically targeted to the TJs. (B) Colocalization between the
TRAF4-TRAF domain and fluorescently tagged PIP-probes. MCF7 cells were co-transfected with the mCherry-tagged TRAF domain and EGFP-tagged
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the recruitment of the known PI(4,5)P2 interactor PH-PLCd in

both naked- and PIP-decorated BAR-induced membrane tubes

(Figure 6Ca). Consistent with the known affinity of this sensor for

PI(4,5)P2 [59], the mCherry-tagged PH-PLCd protein hardly co-

localized with naked tubes induced by the BIN1/BAR construct;

conversely, in cells harboring PIP-decorated membrane tubes

induced by the BIN1/BAR-PI construct, the mCherry-tagged PH-

PLCd was massively recruited onto membrane tubes (Figure 6Ca).

We next studied the recruitment of the mCherry-tagged TRAF

domain in this system (Figure 6Cb). Remarkably, the TRAF

domain was massively recruited onto PIP-decorated membrane

tubes (Figure 6Cb, bottom panel) and did not colocalize with

naked tubes (Figure 6Cb, upper panel). This result shows that the

TRAF domain is specifically recruited onto PIP-enriched mem-

branes and supports the notion that this interaction is necessary for

its subcellular localization.

We then used the BAR domain-induced membrane tubulation

assay to study the membrane recruitment of PIP-binding–deficient

TRAF mutants, which have been previously characterized

biochemically (Figure 4). To this aim, the K313E and K345E

mutants were constructed in fusion with the mCherry protein

(Figure 6C) and expressed in COS-7 cells in the presence of either

BIN1/BAR- or BIN1/BAR-PI-induced membrane tubes. In

contrast to the WT TRAF domain, which colocalizes specifically

with PIP-decorated tubes (Figure 6Cb), both mutants did not

colocalize with either naked- or PIP-decorated membrane tubes

and were cytoplasmic (Figure 6Cc–d).

We also looked at the subcellular localization of these two PIP-

binding–deficient mutants in MCF7 cells. In these cells the WT

TRAF domain is localized at the plasma membrane (Figure 6D,

upper panel). Consistent with the biochemical in vitro binding

assays that showed that the K313 and the K345 residues were

contributive and essential to the binding with PIPs, respectively

(Figure 4), the TRAF-K313E mutant was localized both in the

cytoplasm and at the plasma membrane (Figure 6D, middle panel,

arrows), while the TRAF-K345E mutant was completely absent

from the plasma membrane and exclusively present in the

cytoplasm (Figure 6D, bottom panel). Altogether, these data are

consistent with the notion that the subcellular localization of

TRAF4 at the plasma membrane is governed by its binding to

membrane resident PIPs.

TRAF–PIP Interaction Is Crucial for TRAF4 Recruitment in
TJs

Compared with the complete protein that localizes predomi-

nantly in TJs, the TRAF domain of TRAF4 in isolation has a

broader localization all along the plasma membrane. To know

whether the binding with PIPs is a prerequisite for the addressing

of the complete TRAF4 protein in TJs, we studied the subcellular

localization of PIP-binding–deficient TRAF4 mutants in the

context of the whole protein. To this aim, sh-insensitive Flag-

tagged WT or mutant TRAF4 proteins (Figure 7A) were expressed

in the MCF7/shT4 cell line (Figure S2). We used this experimen-

tal setting to avoid misinterpretations due to the possible

trimerization of ectopically expressed TRAF4 with endogenous

TRAF4 protein. The localization of the proteins to TJs was then

evaluated by quantification of their colocalization with ZO-1 and

the derivation of a colocalization index (Figure 7B). A complete

colocalization between WT TRAF4 and ZO-1 was measured

confirming its presence in TJs (Figure 7B). Consistent with the

finding that the K313 residue contributes but is not essential to the

binding of TRAF4 with PIPs, the TRAF4-K313E mutant only

partially localized with ZO-1 (Figure 7B, middle panel). Interest-

ingly, the TRAF4-K345E mutant was absent from TJs (Figure 7B).

Indeed, after quantification, the colocalization index was reduced

by 40% and 80% for the TRAF4-K313E and TRAF4-K345E

mutants, respectively (Figure 7C). Taken together, these data show

that PIP binding is a prerequisite for the localization of TRAF4 at

TJs.

TRAF4 Functions on TJs in a PIP-Binding–Dependent
Manner

Our results indicate that TRAF4 is a negative regulator of TJs

in MECs (Figure 1), and the TRAF domain is a novel PIP-binding

domain that is essential for the addressing of the protein to the

plasma membrane. In addition, we showed that the PIP-binding–

dependent membrane recruitment of TRAF4 is necessary for its

addressing to TJs. We then wondered whether the role of TRAF4

on TJs was dependent on its association with PIPs at the

membrane and moreover on its presence to TJs. To address this,

the K345E PIP-binding–deficient mutant of TRAF4 was used to

rescue the TJ phenotype found in TRAF4-silenced MCF10A cells

(MCF10A/shT4) (Figure 1). Both WT and mutant TRAF4

proteins were efficiently expressed in MCF10A/shT4 cells to

levels above endogenous TRAF4 (Figure 7D). As previously

mentioned (Figure 1B), TRAF4-silenced cells (MCF10A/

shT4+pBABE) have a ,2-fold increase in cells with TJs

(Figure 7Ea and b,F), while cells with restored TRAF4 expression

had 2-fold less TJs than the parental (Figure 7Ea and c,F). In

contrast, restoring TRAF4 expression by using the TRAF4-

K345E mutant did not rescue the phenotype induced by TRAF4

silencing (Figure 7Ec and d,F).

These results provide a novel illustration of the importance of

TRAF4 subcellular localization on cell biology. Indeed, they show

that to act as a negative regulator on TJ formation and/or

stability, TRAF4 must be addressed to the plasma membrane/TJ

via a PIP-binding–dependent mechanism. Therefore, preventing

or favoring its presence in the plasma membrane and in TJs

represents a means to regulate its action on tissue homeostasis.

TRAF4 Promotes MEC Migration
Of interest, TJ proteins, in addition to their characterized role in

mediating cell–cell adhesion and assuring an epithelial barrier, can

have an active role in cell migration. The protein ZO-1 actively

PH domains of the phospholipase C protein (PH-PLC-GFP, top) and Akt (PH-Akt-GFP, bottom). Confocal sections showed that the TRAF domain of
TRAF4 co-localized with PH-PLC-GFP and PH-Akt-GFP proteins that bind PI(4,5)P2 and PI(3,4,5)P3 at the apical and basolateral side of the cell,
respectively. Nuclei were stained using Hoechst (blue). Insets on the right represent a 2.56magnification. Scale bar, 5 mm. (C) Tubulation assays in
COS7 cells. The recruitment of PH-PLC-Cherry (a), WT TRAF-Cherry (b), and mutant TRAF domains TRAF-K313E-Cherry (c) or TRAF-K345E-Cherry (d) on
membrane tubes was studied by colocalization with BIN1/BAR-GFP (top panels) and BIN1/BAR-PI-GFP (bottom panels). Nuclei were stained using
Hoechst (blue). Similarly to PH-PLC-Cherry, a known PI(4,5)P2 binding domain, TRAF-Cherry protein was specifically recruited to PIP-enriched
membrane tubes. Both lysines 313 (c) and 345 (d) mutations prevent the recruitment of the TRAF domain to PIP-enriched membrane tubes. (a–d)
Confocal sections; insets on the right are 3.56magnification, Scale bar, 5 mm. (D) Confocal sections of MCF7 cells transfected with WT and mutant
TRAF domains of TRAF4 fused to EYFP (green). The WT TRAF domain is recruited to the plasma membrane (top panels). While the K313E mutant
(middle panel) is mostly cytoplasmic, a small fraction of the protein still localizes to the plasma membrane (arrows). The K345E mutant is only
detected in the cytoplasm (bottom panel). Nuclei were stained using Hoechst (blue). Insets on the right are 36magnification. Scale bar, 5 mm.
doi:10.1371/journal.pbio.1001726.g006
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Figure 7. TJ recruitment of TRAF4 is PIP-binding dependent. (A) Schematic representation of sh-insensitive Flag-tagged WT and mutant
TRAF4 constructs used to reintroduce TRAF4 expression in MCF7/shT4 cells. (B) Recruitment of WT and mutant TRAF4 proteins (green) at TJs was
analyzed by colocalization with ZO-1 (red). The highlighted overlap (white) between TRAF4 and ZO-1 staining is shown on merge panels and alone
on the right panel. While the TRAF4-K313E mutant is still partially colocalized with ZO-1 (middle panels), the TRAF4-K345E mutant does not colocalize
anymore with ZO-1 (bottom panels). Scale bar, 10 mm. (C) Quantification of WT and mutant TRAF4 recruitment at TJs. The colocalization index
(overlapping area between TRAF4 and ZO-1 staining divided by the TJ length) was measured on 10 microscopic fields. Compared to the WT protein,
the colocalization index was reduced by 40% and 78% for K313E and K345E TRAF4 mutants, respectively. (D) Western blot analysis of TRAF4 protein
level in parental MCF10A and in TRAF4-silenced cells (MCF10A/shT4) where WT (MCF10A/shT4+TRAF4) and mutant (MCF10A/shT4+TRAF4K345E)
TRAF4 expression was restored. The MCF10A/shT4+pBABE cell line represents a control line transduced with the empty vector. Beta-actin was used as
a loading control. (E) The presence of TJs was estimated by ZO-1 staining in parental (a) and in TRAF4-silenced cells where the expression of WT (c)
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regulates cell migration by modulating cytoskeletal dynamics [60].

Given that TRAF4 is overexpressed in breast cancer and that

migration of cancer cells participates in tumor progression, we

addressed the role of TRAF4 in the migration of breast cancer

cells. To this aim, TRAF4 expression was modulated in MCF7

cells, and cell migration was measured using the Boyden chamber

assay. We first studied cell migration in TRAF4-depleted MCF7

cells. Compared to parental (MCF7) and to a control cell line

(MCF7/shCtrl), TRAF4 was expressed by less than 20% in

TRAF4-silenced cells (MCF7/shT4) (Figure 8A). Migration was

impaired by 40% in this line compared to the controls

(Figure 8B,C). We next reintroduced TRAF4 expression in this

silenced cell line (MCF7/ShT4+TRAF4), and TRAF4 was

expressed at a level above the parental cells (Figure 8A).

Consistently, reintroduction of TRAF4 was associated with

increased cell migration similar to parental MCF7 cells

(Figure 8B,C). To complement these findings, MCF7 cells stably

expressing TRAF4 were generated (MCF7/TRAF4). TRAF4 was

increased 3-fold as compared to parental and control cells

(Figure 8A). Supporting the role of TRAF4 in cell migration,

compared with parental and control lines, migration was increased

by 40% in these cells (Figure 8B,C). To know whether this

promigratory function is linked with its ability to interact with PIPs

and to localize at TJs, we then used the PIP-binding–deficient

TRAF4-K345E mutant in the Boyden chamber migration assay.

To this end, this mutant was reintroduced and expressed in

TRAF4-silenced cells (MCF7/shT4+TRAF4-K345E) (Figure 8A).

In contrast to the WT protein, the TRAF4-K345E mutant did not

restore cell migration in TRAF4-silenced MCF7 cells, indicating

that a PIP-binding–deficient mutant could not rescue the

migration phenotype induced by the loss of TRAF4 expression

(Figure 8B,C). The positive impact of TRAF4 on cell migration

was also addressed in MCF10A cells. Consistent with the results

obtained using MCF7 cells, TRAF4 positively regulated cell

migration in this cell line (Figure S6). Altogether, these results

support the role of TRAF4 as a novel regulator of cell migration

operating at the TJ level in a PIP-binding–dependent manner.

Discussion

In the normal breast, TRAF4 is predominantly localized in TJs

of polarized epithelial cells. The molecular mechanism targeting

TRAF4 to these adhesion structures as well as its function at these

regions remained elusive. The experiments presented here provide

for the first time, to our knowledge, a molecular explanation for

the recruitment of TRAF4 in TJs. Indeed TRAF4 uses its TRAF

domain as a novel PIP-binding domain to be addressed to the

plasma membrane, an essential step for its recruitment in TJs.

Moreover, they show that TRAF4 acts as a negative regulator of

TJs and favors migration of breast cancer cells.

Several lines of evidence indicate a link between TRAF4 and

cell polarity [24]. During development, breast epithelial cells

polarize and assemble into duct and acini structures. One of the

earliest manifestations of breast cancer is the loss of this cellular

organization. Indeed, loss of cell–cell contact and epithelial

polarity are hallmarks of carcinomas and contribute to their

development as carcinomas in situ or their progression to invasive

adenocarcinomas. TRAF4 expression is altered in breast carcino-

mas and the protein shifts from TJs to other subcellular territories,

suggesting that it could be part of the mechanisms leading to the

disruption of the polarized breast epithelium.

Of interest, the epithelial polarity program relies on several

conserved cellular machineries, including the domain-identity

machinery that builds a TJ fence between apical and basolateral

plasma membrane domains by using specific proteins and lipids

[61]. The asymmetric distribution of lipids from the PIP family

within the plasma membrane plays a key role in the establishment

of cell polarity. These lipids represent optimal signaling mediators

by forming docking sites for PIP-binding protein effectors

[49,54,62]. To date, 11 PIP-binding domains have been described,

including PH (pleckstrin homology), PX (Phox homology), and

FYVE (Fab1, YOTB, Vac1, and EEA1) domains [63]. While the

majority of PIP-binding modules selectively bind to one PIP

depending on its phosphorylation status, it has recently emerged

that some proteins bind PIPs in a promiscuous manner. It is the

case for the polarity proteins PAR3, ZO-1, and a-syntrophin.

They do not contain a consensus PIP-binding motif but use their

PDZ or PH domains to bind PIPs [35,36,64]. It has been proposed

that the loose binding of these proteins to PIPs served to enhance

their affinity for membranes and that additional factors are

required to fine-tune their subcellular localizations [49]. In this

study, we show that TRAF4 uses its TRAF domain as a novel PIP-

binding module. The TRAF domain is highly conserved within

the family of TRAF proteins; consistent with this conservation we

also show for the first time to our knowledge that the TRAF

domains of TRAF1 to 26 also bind PIP. Therefore, the TRAF

domain can be considered as a novel bona fide PIP-binding domain.

Similarly to PAR3, ZO-1, and a-syntrophin, the TRAF domain of

TRAF4 has a broad affinity for PIPs. Consistently, the TRAF

domain in isolation localizes homogenously along the plasma

membrane, while the full-length TRAF4 protein is restricted to

TJs, suggesting that the binding with PIP is a prerequisite for the

addressing of TRAF4 in TJs. Additional mechanisms are

subsequently required to refine TRAF4 localization to TJs.

Moreover, we solved the 3D structure of the TRAF domain of

TRAF4 and showed that it exists as a trimer. Ligand-binding

studies show that under its trimeric form TRAF4 can bind one to

three lipid molecules, and thus avidity might increase its affinity to

lipid membranes. These structural data suggest that the TRAF

domain serves to enrich TRAF4 at the plasma membrane and its

membrane association can be modulated by the local concentra-

tion in PIPs.

The TRAF4-TRAF trimer has a mushroom-shaped structure.

The globular part defined as TRAF-C forms the cap, and the

coiled-coil part known as TRAF-N is the stalk. To date, among the

solved TRAF domains from TRAF2, TRAF5, and TRAF6

proteins [40,65,66], all share this specific architecture. In the

canonical mode of action, TRAFs are cytoplasmic adaptor

proteins that bind to the cytoplasmic tail of activated TNF and

interleukin-1/Toll-like receptors to mediate a wide range of

biological functions including immune and inflammatory respons-

es [67]. When the TRAF domain of TRAF2 and TRAF6 were

crystallized in the presence of a peptide representing their receptor

ligand, the structure showed the peptide bound to a shallow

surface depression on the side of one protomer without contact to

the adjacent protomer [40,66]. This mode of binding is very

and mutant TRAF4 (d) was reintroduced. TRAF4-silenced cell line transduced with the empty vector (b) was used as a control. The PIP-binding–
deficient TRAF4-K345E cannot rescue the phenotype induced by TRAF4 silencing on TJs. Left panels, representative confocal image sections of ZO-1
staining (green); right panels, merge with Hoechst staining (blue). Scale bar, 20 mm. (F) TJ quantification in cell lines described in (D) and (E) was
performed as described in Figure 1E. n, number of microscopic fields used for the quantification.
doi:10.1371/journal.pbio.1001726.g007
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distinct from the PIP-binding model that we predict from the

structure of the TRAF domain. In this model, each PIP molecule

binds at the interface between two neighboring protomers. Very

interestingly, the superimposition of the receptor peptide tail and

lipid binding sites shows that they do not overlap. Therefore, a

synergistic interaction between both modes of binding is possible

in theory. The measured affinity constants between TRAF

proteins and their receptor ligand were quite low (40–60 mM

range) [44,68], and it has been proposed that the high and specific

affinity for TRAF proteins with their receptors is achieved through

avidity [48]. Our results suggest that, in addition, a synergistic

interaction of TRAF proteins with a membrane lipid would

likewise stabilize and orient the TRAF adaptors at the membrane

and increase interaction with their receptors [44,68]. This

potential mechanism remains to be addressed experimentally.

Other novel results from this study are the function of TRAF4

on TJ and cell migration. These findings provide a rationale for

most of the developmental defects that were reported in TRAF4-

deficient animals. For example, it has been shown that TRAF4 is

essential for neural tube closure (NTC) and neural crest cell

development, two processes involving TJ remodeling prior to cell

migration [69,70]. Indeed, TRAF4 knock-down in Xenopus laevis

causes neural plate-folding defects and impairs neural crest cell

formation, whereas TRAF4 overexpression expends the neural

crest [12]. TRAF4 involvement in NTC has also been described in

mice as TRAF4-deficient mice exhibit NTC defects giving rise to

mild spina bifida phenotypes and embryonic lethality [13]. In

addition, it has been recently shown that TRAF4 is a direct target

of Twist, a transcription factor involved in neural crest formation

and fate determination in frog [71]. Our results are consistent with

these observations and suggest that TRAF4 contributes to TJ

plasticity, a key process regulating NTC and neural crest cell

formation and migration. Thus, we believe that in TRAF4 knock-

out animals, neural crest cells might fail to disrupt their TJs,

impairing their ability to undergo epithelial-to-mesenchymal

transition and to achieve their proper destination contributing to

the observed abnormalities. Cell–cell adhesion is an important

regulator of cell migration [72]. In our experiment we did not

Figure 8. TRAF4 promotes MCF7 cell migration. (A) Western blot analysis of TRAF4 expression. In MCF7 cells, TRAF4 expression has been
silenced (lanes 2–6), increased (lane 8), and restored in silenced cells using the WT (lane 5) and the K345E mutant (lane 6). Parental (lane 1), control
shRNA (lane 2), and control expression vector (lane 7) together with a TRAF4 silenced line transduced with the empty vector (lane 4) were used as
controls. TRAF4 expression levels were normalized to control parental cells using b-actin as loading control; values are indicated on the top. (B)
Representative microscopic field of the bottom side of the transwell. Migrating cell nuclei were stained with Hoechst, and images are shown as
inverted look-up table. (C) Bar chart representing the quantification of cell migration in MCF7 cells. The number of cells that migrated were counted
and normalized to control parental cells. Thirty-six microscopic fields from three independent experiments were used for the quantification.
doi:10.1371/journal.pbio.1001726.g008
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notice significant alteration of molecular components involved in

adherens junctions and in desmosomes. Nevertheless, we cannot

rule out that these structures are altered by TRAF4 expression.

Part of TRAF4 function might be linked with desmosomes and

adherens junctions.

To conclude, TRAF4 acts both as a negative regulator of TJs

and a cell migration promoter. To achieve its function, TRAF4

needs to interact with PIPs, which allows for its trafficking to the

plasma membrane and subsequently to the TJs. This suggests that

TRAF4 acts in a signaling loop involving lipids; however, the

molecular mechanisms involved remain unclear and will be

addressed in the future. Importantly, gain of TRAF4 expression

and protein mislocalization have been reported in a variety of

carcinoma. Notably, TRAF4 was found to be overexpressed

through gene amplification in about 20% of breast cancers

[1,3,73]. Interestingly, two recent reports showed that TRAF4

favors breast cancer cell migration [74,75]. In particular, Zhang et

al. showed that TRAF4 regulates the TGF-b pathway and that

TRAF4 expression favors breast cancer metastasis and is

associated with a poor prognosis among breast cancer patients

[74]. Therefore, gain of TRAF4 function appears to be an

important factor for the development and progression of breast

cancer.

Materials and Methods

Cell Culture, Transfections, and Infections
COS7 cells were maintained in DMEM supplemented with 5%

fetal calf serum (FCS) and 40 mg/ml gentamycin. MCF7 cells were

grown in DMEM supplemented with 10% FCS, 0.6 mg/ml

insulin, and 40 mg/ml gentamycin. MCF10A cells were cultured

in DMEM/HAM F12(3:1) supplemented with 20 mg/ml adenine,

5 mg/ml insulin, 5 mg/ml human apo-Transferrin, 1.5 ng/ml

triiodothyronin, 2 ng/ml hEGF, 0.5 mg/ml hydrocortisone, 10%

FCS, and 40 mg/ml gentamycin. Plasmid transfection was

performed with Fugene6 transfection reagent (Roche) according

to the manufacturer’s protocol. For retroviral infection, retroviral

vectors were co-transfected with pCL-Ampho vector (Imgenex)

into a 293T retroviral packaging cell line using Fugene6 reagent.

For lentiviral infection, pLKO.1 vectors were cotransfected with

three packaging plasmids—pLP1, pLP2, and pLP/VSVG (Invi-

trogen)—into the 293T cell line using Fugene6 reagent. Both

retroviral and lentiviral particles were collected 48 h after

transfection, supplemented with 10 mg/ml polybrene and

20 mM Hepes, and incubated with MCF7 or MCF10A cells.

Cells were then selected by addition of 0.5 mg/ml puromycin for

lentiviral infection or 10 mg/ml blasticidin for retroviral infection.

Cloning and Constructs
A pET28a(+)-TAP/6His expression vector was made by

inserting a sequence encoding the TAP tag between the NdeI

and NcoI restriction sites of the pET28a(+) vector (Novagen) [76].

To produce the recombinant protein corresponding to the TAP

and the 6His tags in fusion, the synthetic oligonucleotide 59-GGA

TCC GAA TTC GTT AAC CTC GAG GCG GCC GC-39 was

cloned into the BamHI and NotI restriction sites of the pET28a(+)-

TAP/6His vector. To produce recombinant proteins flanked by a

TAP and a 6His tag at the amino- and carboxy-terminal

extremity, respectively, the coding sequence of the full-length

TRAF4 (pET28a(+)-TAP-TRAF4-6His), the RING-7xZf domains

(pET28a(+)-TAP- RING-7xZf -6His), or the TRAF domain

(pET28a(+)-TAP-TRAF-6His) of TRAF4 were amplified by

PCR using the synthetic primers GAGA GGA TCC ATG GCG

CCT GGC TTC/GAGA GTC GAC TCA GCT GAG GAT

CTT CCG, GAGA GGA TCC ATG GCG CCT GGC TTC/

GAGA GTC GAC TCA ACA CAT CAT GGC CAG, and

GAGA GGA TCC GCC CTG GTG AGC CGG/GAGA GTC

GAC TCA GCT GAG GAT CTT CCG, respectively. Sequences

encoding TRAF1, TRAF2, TRAF3, TRAF5, and TRAF6 TRAF

domains were amplified by RT-PCR from human liver RNA

using the following primers: TRAF1, GAGA GGA TCC CAG

ACC CTG GCC CAG AAA GA/GAGA GTC GAC AGT GCT

GGT CTC CAC AAT GC; TRAF2, GAGA GGA TCC CAA

GAC AAG ATT GAA GCC CT/GAGA GTC GAC GAG CCC

TGT CAG GTA CAC AA; TRAF3, GAGA GGA TCC GGC

CTG CTG GAG TCC CAG CTG AG/GAGA GTC GAC

GGG ATC GGG CAG ATC CGA AGT AT; TRAF5, GAGA

GGA TCC GCC GTT TTA GAA GAG GAA ACT A/GAGA

GTC GAC GAG ATC CTC CAG GTC AGT TAA GT;

TRAF6, GAGA GGA TCC CGC CTT GTA AGA CAA GAC

CA/GAGA GTC GAC TAC CCC TGC ATC AGT ACT TC.

The sequence encoding dTRAF1 was amplified by RT-PCR from

S2 cells RNA using the following primers: GAGA GGA TCC

GCC CTC AGC TCG CGC CAG GG/GAGA GTC GAC AAC

GGC CAC TAT CTT GCT GG. PCR products were cloned into

the BamHI and SalI restriction sites of the modified pET28a(+)-

TAP/6His.

The sequence encoding the TRAF domain of TRAF4 was

inserted between the NcoI and XhoI restriction sites of the

pET28a(+) vector after PCR amplification using the synthetic

primers AGA CCA TGG CCC TGG TGA GCC GGC AAC

GG/AGA CTC GAG GCT GAG GAT CTT CCG GGG CAG

to generate a vector encoding the 6His-tagged TRAF domain of

TRAF4.

The pRK7N TRAF4 plasmid expressing Flag-tagged TRAF4,

the pEYFP-N1-TRAF4, and pEYFP-N1-TRAF plasmids designed

to express EYFP-fused TRAF4 and TRAF domain of TRAF4 in

isolation, respectively, were previously described [77].

The BIN1/BAR and the BIN1/BAR-PI expression plasmids

were kind gifts from Dr. Karim Hnia (IGBMC). The PH-PLCd1-

GFP and the PH-Akt-GFP expression plasmids were kind gifts

from Dr. Bruno Beaumelle (Centre d’études d’agents Pathogènes

et Biotechnologies pour la Santé, Montpellier, France) and Dr.

Nicolas Vitale (Institut des Neurosciences Cellulaires et Intégra-

tives, Strasbourg, France). The PH-PLCd1 coding sequence was

subcloned into the XhoI and SalI restriction sites of the

pmCherry-C1 vector [78] after PCR amplification using the

synthetic oligonucleotides GAG ACT CGA GCA ATG GAC

TCG GGC CGG/GAG AGT CGA CTC ACT GGA TGT TGA

G to generate pmCherry-C1-PH-PLCd1 expression plasmid.

The sequence encoding the TRAF domain of TRAF4 was

inserted between the KpnI and BamHI restriction sites of the

pmCherry-N1 vector after PCR amplification using the synthetic

primers GAG AAA GCT TGC GCC CTG GTG AGC CGG

CAA CGG/GAG AGT CGA CTCA GCT GAG GAT CTT

CCG GGG CAG to generate a vector encoding the TRAF

domain of TRAF4 fused to pmCherry.

To obtain a shRNA expression vector targeting TRAF4 (target

sequence: CCA GGA CAT TCG AAA GCG AAA) and a control

vector (target sequence: CAA CAA GAT GAA GAG CAC CAA),

annealed oligonucleotides were cloned into the pLKO.1 vector to

generate pLKO.1-shT4 and pLKO.1-shCtrl vectors, respectively

[79].

The retroviral pBABE vector was a kind gift from Dr.

Pattabhiraman Shankaranarayanan (IGBMC). The sequence

encoding TRAF4 was inserted into the EcoRI restriction site of

the pBABE vector after PCR amplification using the synthetic

primers GAG ACA ATT GCC CGC CAT GGC GCC TGG
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CTT CGA CTA CAA GTT C/GAG ACA ATT GTC AGC

TGA GGA TCT TCC GGG G.

Site-directed mutagenesis was performed using the synthetic

oligonucleotides: 59-GTG CTC ATC TGG GAG ATT GGA

TCC TAT GGA CGG CGG-39, 59-GGC AGC TAT GGA GCG

GAG CTC CAG GAG GCC AAG-39, 59-AAG TAT GGT TAC

GAG CTC CAG GTG TCT GCA-39, 59-GTG GCC CTT TGC

TGC AGA AGT CAC CTT CTC C-39, 59-GAT CAG AGC

GAC CCC GGG CTG GCT GAA CCA CAG CAC-39, 59-TGG

AAG AAT TTC CAG GAA CCC GGG ACG TGG CGG GGC

TCC-39, 59-ATT CGA AAG CGA AAC TAC GTA GAG GAT

GAT GCA GTC TTC-39, and 59-GCA GTC TTC ATC GAA

GCT GCA GTT GAA CTG CCC-39 to generate K313E,

R319E/R320E, K345E, R384E/R385E, K400E, K419E,

R452E, and R459E mutant TRAF4-expressing constructs,

respectively (QuikChange site-directed mutagenesis kit, Agilent).

To generate shT4-insensitive constructs, TRAF4 expression

vectors were mutated by site-directed mutagenesis using the

synthetic oligonucleotide 59-CAA GTT CAT CTC CCA CCA

GGA TAT CAG GAA AAG GAA CTA TGT GCG-39.

Production and Purification of Recombinant Proteins
Proteins were expressed overnight in E. coli BL21 (DE3) at 16uC

in the presence of 0.4 mM isopropyl-b-D-thiogalactopyranoside

(IPTG) (Sigma). The cell pellet was lysed and sonicated in 50 ml of

Lysis buffer (50 mM NaH2PO4/Na2HPO4, 300 mM NaCl,

10 mM imidazole [pH 8.0]) containing EDTA-free complete

protease inhibitor tablets (Roche). The lysate was centrifuged at

10,0006 g for 1 h at 4uC. The supernatant was incubated with

1 ml of His-Select Nickel Affinity Gel (Sigma) overnight at 4uC
under agitation. The resin was washed with wash buffer 1 (50 mM

NaH2PO4/Na2HPO4, 300 mM NaCl, 25 mM imidazole

[pH 8.0]) and wash buffer 2 (50 mM NaH2PO4/Na2HPO4,

300 mM NaCl, 40 mM imidazole [pH 8.0]). Bound proteins

were eluted with elution buffer (20 mM NaH2PO4/Na2HPO4,

250 mM imidazole [pH 7.4]). Eluted fractions were dialyzed

against Calmodulin Exchange buffer (10 mM Tris-HCl, 150 mM

NaCl, 1 mM Mg(CH3COO)2, 1 mM imidazole, 10 mM b-

mercaptoethanol, 0.1% NP40, 2 mM CaCl2, complete protease

inhibitor (Roche) [pH 8]). Dialyzed fractions were incubated with

1 ml of Calmodulin Affinity Resin (Stratagene), supplemented

with 3 ml of 2 M CaCl2 and then incubated overnight at 4uC
under agitation. The resin was washed three times with

Calmodulin Exchange buffer. Bound proteins were eluted with

Calmodulin Elution buffer (10 mM Tris-HCl, 150 mM NaCl,

1 mM Mg(CH3COO)2, 1 mM imidazole, 10 mM b-mercapto-

ethanol, 0.1% NP40, 2 mM EGTA [pH 8]). The fractions were

then analyzed by SDS-PAGE followed by Coomassie Blue or

Western blotting.

Coomassie Blue Staining and Immunoblotting
Proteins were assayed by BCA protein assay (Pierce). Equal

amounts of protein lysates in Laemmli were loaded onto 10%

SDS-PAGE gel electrophoresis. For Coomassie Blue staining, the

gel was incubated in Coomassie brilliant blue R 250 (Merck)

solution. For immunoblotting, the SDS-PAGE gel was transferred

onto nitrocellulose membranes. Membranes were blocked for 1 h

at room temperature with PBST– 4% non-fat dry milk and then

incubated overnight with the following antibodies: rabbit poly-

clonal anti-STARD3 (IGBMC [80]), mouse anti–b-actin (A5441;

Sigma), mouse anti–b-catenin (610153, BD Transduction Labo-

ratories), rat anti-E-Cadherin (ECCD-2; 13-1900; Invitrogen),

mouse anti-Desmoplakin 1/2 (2.15; Progen Biotechnik), and

mouse monoclonal anti-TRAF4 (2H1; Euromedex/IGBMC). The

anti-STARD3 antibody does not recognize recombinant proteins,

but the immunoglobulin-binding domain of the protein A within

the TAP-tag directly binds the antibody. Secondary antibodies

coupled with HRP (Jackson ImmunoResearch Laboratories, Inc.)

were incubated for 1 h, and antibody binding was detected by

ECL (Thermo Fisher Scientific).

Lipid Overlay Assay
Binding of recombinant proteins flanked by the TAP and the

6His tags to PIP (Phosphatidylinositol Phosphate) strips (Echelon

Biosciences) or to homemade lipid-coated membranes was done as

described by Dowler and collaborators [81]. Briefly, lyophilized

lipids (phosphatidylethanolamine (Avanti: 850757P), PA (Avanti:

840875P), PI(3,5)P2 (Avanti: 850154P), PI(4,5)P2 (Avanti:

850155P), and PI(3,4,5)P3 (Avanti: 850156P)) were reconstituted

to 1 mM stocks in a 1:1 solution of methanol and chloroform.

Lipids were diluted in a 2:1:0.8 solution of methanol:chloroform:-

water to 500 mM. We spotted 1 ml aliquots of each lipid and

solvent onto hybond-C extra membrane (Amersham). The

membranes were then dried at room temperature for 1 h.

Recombinant proteins (10 nM) were incubated for 1 h at room

temperature (RT) with the preblocked PIP strips or homemade

lipid-strip membranes. Membranes were then washed 10 times

with TBS containing 0.1% Tween-20 (TBST) and incubated for

1 h at RT with the rabbit polyclonal anti-STARD3 antibody (1/

1,000; IGBMC). After 10 washes with TBST, membranes were

incubated for 1 h with a peroxidase-conjugated affinipure goat

anti-rabbit IgG (1:10,000; Jackson ImmunoResearch). After 10

washes with TBST, bound proteins were detected by ECL

(Thermo Fisher Scientific).

Recombinant TRAF-6His Purification and Mass
Spectrometry Analysis

For mass spectrometry analysis, recombinant proteins were

expressed as 6His fusion proteins and purified with His-Select

Nickel Affinity Gel (Sigma) as described above. The protein was

finally purified by gel filtration over a 16/60 Superdex 200

Column (GE Healthcare) in Ammonium bicarbonate buffer

(100 mM NH4HCO3 [pH 8]). Fractions containing recombinant

TRAF domain were pooled and concentrated with Amicon Ultra-

15 Centrifugal Filter Unit (Merck Millipore). Recombinant

TRAF-6His protein was incubated in the presence or absence of

a soluble form of PI(3,4,5)P3 (PI(3,4,5)P3-diC4; Echelon Biosci-

ences) in a 1:5 protein:lipid ratio and then submitted to ESI-TOF

(MicrO-Tof II, Bruker, Bremen, Germany). The analysis of TRAF

alone and TRAF incubated with PI(3.4.5)P3 was performed in

native condition with a final concentration of 20 pmol/mL of

protein in ammonium bicarbonate buffer. The samples were

continuously infused into the ion source at a flow rate of 3 mL/min

using a syringe pump (KD Scientific, Holliston, MA). The data

were acquired in the positive mode. The calibration of the device

was performed with a solution of cesium iodide (Fluka) 1 mg/mL

in ethanol. To preserve the noncovalent complexes, relatively mild

interface conditions were used, a declustering voltage (Capillary

exit) was fixed at 200 V, and the capillary temperature was set to

160 and 180uC. The time of acquisition was between 1.5 min and

2 min. Data were analyzed with Data Analysis software (Bruker)

and the multicharged spectra obtained were then deconvoluted

with Maximum Entropy software.

Liposome Flotation Assay
Liposome flotation assays were performed as described in

Manneville et al. [43]. Liposomes were made with DOPC (Avanti
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Polar Lipids, 850375C), 1% NBD-PE (Invitrogen), with or without

5% phosphinositides: 18:1 PI(3,4,5)P3 (Avanti Polar Lipids,

850156P) or 18:1 PI(4,5)P2 P3 (Avanti Polar Lipids, 850155P).

Lipids in chloroform were mixed and the solvent was removed by

evaporation. The lipid film was resuspended in HK buffer (50 mM

Hepes pH 7.2, 120 mM potassium acetate). Liposomes were

extruded with a mini-extruder equipped with a 100-nm pore filter

(Avanti Polar Lipids). Recombinant proteins were incubated

10 min with liposomes in HKM buffer (HK supplemented with

1 mM MgCl2) in a total volume of 150 ml. The mix was adjusted

to 30% sucrose by adding 100 mL of 2.2 M sucrose in HKM

buffer. This sucrose cushion was overlayed with 200 ml HK

containing 0.75 M sucrose and then 50 ml HK. The samples were

centrifuged at 240,0006 g for 1 h in a swing rotor. The bottom

(200 ml), middle (200 ml), and top (100 ml) fractions were manually

collected from the bottom. Liposome flotation was verified by

detecting NBD-PE fluorescence: dot blots of each fraction were

analyzed using a Fuji LAS-4000 fluorescence imaging system.

Proteins were analyzed by SDS-PAGE followed by Western blot

using an anti-His antibody (HIS-1G4, Euromedex/IGBMC). The

amount of membrane-bound proteins was determined by com-

paring proteins present in the top fraction to a reference lane

containing the total amount of the loaded protein.

Circular Dichroism
All the CD experiments were recorded by using a Jasco J-815

spectropolarimeter (Easton, MD) fitted with an automatic six-

position Peltier thermostated cell holder. The instrument was

calibrated with 10-camphorsulphonic acid. Far-UV CD data were

obtained using a 0.1 mm pathlength cell (Quartz-Suprasil, Hellma

UK Ltd) at 25.0uC60.1uC. Spectra were acquired using a

continuous scan rate of 50 nm/min and are presented as an

average of at least 20 successive scans. The response time and the

bandwidth were 1 s and 1 nm, respectively. The absorbance of the

sample (at a concentration of 35 mM) and buffer (Cl2-free buffer)

was kept as low as possible. Spectra were carried out in 100 mM

ammonium bicarbonate (pH 7.0) and recorded between 180 and

260 nm. All spectra were corrected by subtracting the corre-

sponding solvent spectrum obtained under identical conditions.

The signal is expressed in mean residue ellipticity (deg

cm2 dmol21). Data were deposited on the Protein Circular

Dichroism Data Bank (http://pcddb.cryst.bbk.ac.uk) [82]

under accession numbers CD0004232000 (TRAF-6HIS),

CD0004233000 (TRAF-6HIS K413E), and CD0004234000

(TRAF-6HIS K345E).

Dynamic Light Scattering
DLS experiments were carried with the Dynapro Nanostar

instrument (Wyatt Technology). Laser wavelength was 658 nm.

DLS measurements were performed at 25uC using 20 mM protein

in 10 mM Tris pH 7.5, 150 mM NaCl. Each measurement was

an average of 10 runs, 7 s each. Size distribution by percentage of

mass (% Mass) was used for the results analysis. Datasets obtained

were analyzed using the Dynamics software (Wyatt Technology).

ITC
ITC was carried out using an ITC 200 calorimeter (Microcal,

Northhampton, MA) at 25uC. The recombinant TRAF-6His

protein was dialyzed extensively against 10 mM Tris pH 7.5,

150 mM NaCl. A typical titration consisted of injecting incre-

mentally 2 ml of 500 mM inositol-(1,3,4,5)-tetrakisphosphate (IP4,

Echelon) into the 16 mM protein sample, at time intervals of

3 min, to ensure that the titration peak returned to the baseline.

Calorimetric data were analyzed with the evaluation software

MicroCal ORIGIN (MicroCal Software, Northhampton, MA).

Crystallization, Data Collection, and Structure Resolution
TRAF4 was crystallized at 6.4 mg ml21 with a 1:1 molar ration

of inositol-(1,3,4,5)-tetrakisphosphate (IP4). The crystallization

experiments were carried out by the sitting-drop vapour diffusion

method at 293 K using a Cartesian nanolitre dispensing robot. A

mixture consisting of 0.2 ml protein solution and 0.2 ml reservoir

solution was equilibrated against 50 ml of reservoir solution.

Several commercially available screens were used including the

PEGs suite and the ProComplex suite (Qiagen) and Wizard I & II

(Emerald Biosystems). Crystals appeared in several conditions with

the best being 15% PEG 4000, 0.1 M HEPES pH 7.0. The

crystals were briefly transferred to crystallization solution supple-

mented with 25% PEG 400 and flash cooled in liquid nitrogen.

Data were collected from a single cryo-cooled crystal (100 K) on

a MarMOSAIC 225 CCD detector (Marresearch) on the ID23-2

beamline of the European Synchrotron Radiation Facility (ESRF).

We collected 180u of data to 1.85 Å using 2.25u rotation and

1.55 s exposure time per image. The data were indexed and

processed with XDS [83] and scaled by AIMLESS [84,85] from

the CCP4 suite [86]. The crystals belonged to the space-group P21

with unit cell parameters a = 54.625 Å, b = 85.443 Å,

c = 61.646 Å, b= 108.076u. The structure was solved by molec-

ular replacement using PHASER [87] in the PHENIX suite [88].

The structure of the trimer of human TRAF2 was modified using

CHAINSAW [89] to trim the side chains to the last common atom

and was used as a search model. The asymmetric unit contains one

copy of the TRAF4 homotrimer with a corresponding Matthews

coefficient [90] of 2.02 Å3/Da and a solvent content of 39.2%

(assuming a partial specific volume of 0.74 ml g21). Refinement

was performed using BUSTER (BUSTER-TNT 2.10) followed by

iterative model building in COOT [91].

The quality of the refined model was assessed using MOL-

PROBITY [92] and Procheck [93]. Data collection and refine-

ment statistics are summarized in Table S1. Molecular graphic

figures were generated using PyMOL [94]. Coordinates and

structure factors have been deposited at the Protein Data Bank

with accession code 3ZJB.

Docking of PI(3,4,5)P3-diC4 to Human TRAF4
The 3D structure of PI(3,4,5)P3 was obtained from a 2D sketch

by Corina [95], and its protonation state at pH 7.4 was predicted

using the Filter program [96]. A fully deprotonated form (net

charge of 27) was predicted to be the most abundant species and

further considered for docking. Hydrogen atoms were added to the

X-ray structure of human TRAF4 by means of the SYBYL X-2.0

package [97].

The ligand was then docked into the X-ray structure of human

TRAF4 with the program GOLD [98]. The active site was defined

by any residue within a 10-Å-radius sphere centered at the mid-

distance between Lys313A and Lys345C Ca atoms. Five residue

side chains (Lys313A, Arg297C, Glu298C, Glu300C, and

Lys345C) were considered flexible during the docking using the

GOLD default rotamer library. Hydrogen bonding of the ligand to

Lys313A and Lys345 NZ atoms was set as a prerequisite using a

constraint weight of 20.0 and a minimum geometry weight of

0.005. The best docking pose of each of 20 independent docking

runs was saved, therefore leading to 20 possible docking solutions,

out of which the one with the best docking score was retained. The

ligand topology was parameterized with the Antechamber [99]

module of AMBER [100]. The corresponding protein—ligand

complex was embedded in a box of 23668 TIP3P water molecules
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and was further refined in AMBER [100] using the AMBER

general atom force field (GAFF) for the ligand and the ff99 force-

field for the protein. The fully hydrated complex was refined by

1,500 steps of steepest descent plus 4,000 steps of conjugate

gradient energy minimization.

Immunofluorescence
MCF7, COS-7, and MCF10A cells were grown on glass

coverslips and transfected for 24 h. Cells were then fixed for

20 min at RT with 4% paraformaldehyde in phosphate buffered

saline (PBS) and permeabilized for 10 min with 0.1% Triton X-

100 in PBS. After blocking with 1% bovine serum albumin (BSA)

in PBS, cells were incubated at RT with the primary antibodies

rabbit anti-Flag (1:2,000; F-7425 Sigma) and mouse anti-ZO-1

(1:1,000; Zymed). After three washes in PBS, cells were incubated

for 1 h with Cy3- and Alexa488-conjugated secondary antibodies

(Jackson ImmunoResearch and Invitrogen-Molecular Probes,

respectively). After two washes, nuclei were counterstained with

Hoechst-33258 dye. Slides were mounted in ProLong Gold

(Invitrogen). Observations were made with a confocal microscope

(Leica SP2 UV, 636, NA 1.4). For TJ recruitment analysis, images

were acquired using the same confocal microscope settings (laser

intensity, PMT gain …). The overlapping staining between WT or

mutant TRAF4 and ZO-1 was highlighted in white by the

‘‘colocalization analysis’’ tool from ImageJ software (http://

rsbweb.nih.gov/ij/). Pixels were considered colocalized if their

intensity value was above the threshold value (50) and the ratio of

their intensity higher than 50%. A colocalization index corre-

sponding to the overlapping area between TRAF4 and ZO-1

divided by the TJ length was then calculated. Ten fields per

condition were acquired for the quantification. For the measure-

ment of TJ formation and/or stability, immunofluorescence was

performed 48 h after MCF10A cell line plating as described

above.

Calcium-Switch Assay
Calcium switch experiments were performed with minor

modifications of previously published methods [101,102]. In brief,

MCF7 cells were plated at high density in DMEM supplemented

with 10% FCS, 0.6 mg/ml insulin, and 40 mg/ml gentamycin

(HCM). After they reached confluence, cells were washed twice

with the EMEM low-calcium medium (EMEM-LCM) and

incubated with EMEM-LCM for 16 h. Cells were then switched

back to HCM at t = 0, and junctional reassembly was followed for

various times.

Boyden Chamber Assay
The lower Transwell chamber (Millicell, Merck Millipore)

contained cell-appropriate medium (10% FCS, 2% BSA as

chemoattractants). Cells in appropriate medium (0.2% BSA) were

seeded onto membranes of the upper Transwell chamber (6.5 mm

diameter, 8 mm pores), MCF10A (406104 cells, 16 h) and MCF7

(105 cells, 48 h). After incubation, cells were ethanol-fixed and

nuclei were counterstained with Hoechst-33258 dye. Cells at the

membrane upper face were scraped, and those of the lower face

were counted after acquisition using an inverted microscope. A

total of 36 microscopic fields from three independent experiments

were used for quantification. Nuclei were counted with the

‘‘nucleus counter’’ ImageJ plugin.

Statistical Analysis
Averages and standard deviations are shown in the graphs in

Figures 1E, 7C,F, 8C, S2C, and S6C. Analyses were performed by

a one-way ANOVA test, followed by the Dunnet’s multiple

comparison test (GraphPad Prism). *p,0.05, **p,0.01, and

***p,0.001.

Supporting Information

Figure S1 TRAF4 does not impact on adherens junc-
tions in MCF10A cells. (A) Western blot analysis of adherens

junction (AJ), desmosome, and TJ proteins in parental and in

established MCF10A cell lines (Figure 1A). (B–D) The presence of

AJ was estimated by the presence of membrane-bound b-catenin

staining in the different cell lines of TRAF4 loss of function (B),

gain of function (C), and rescue experiments (D). Left panels are

representative confocal sections of b-catenin staining (green), and

right panels are merges with Hoechst staining (blue). Scale bar,

20 mm.

(TIF)

Figure S2 TRAF4 knock-down accelerates TJ reassem-
bly in MCF7 cells. (A) Western blot analysis of TRAF4

expression. In MCF7 cells, TRAF4 expression has been silenced

(lanes 3–5) and restored in silenced cells (lane 5). Parental (lane 1)

and control sh (lane 2) together with a TRAF4-silenced line

transduced with the empty vector (lane 4) were used as controls.

TRAF4 expression levels were normalized to control parental cells

using b-actin as loading control; values are indicated on the top.

(B) Calcium switch assay in MCF7 cells. This assay involves the

disruption of epithelial junctions by extracellular calcium removal

followed by a rapid reassembly triggered by calcium repletion.

Representative confocal image of ZO-1 staining at 0, 3, 5, 7, and

20 h after calcium repletion are shown from left to right,

respectively (inverted grey look-up table). (C) TJ quantification at

3, 5, and 7 h after calcium repletion. Score representing the

number of cells with a continuous ZO-1 staining, normalized to

parental MCF7 cells (percentage). Ten microscopic fields were

used for the quantification.

(TIF)

Figure S3 PIP binding of the TRAF domain is conserved
through evolution. (A) Coomassie blue staining (a) and Western

blot analysis (b) of purified recombinant TRAF domains of human

and fly TRAF4 (dTRAF1). (B) Lipid-overlay assay of TRAF

domains from human and fly TRAF4. In this assay, the TAP-6His

and the TRAF domain of human TRAF4 are used as the negative

and positive control, respectively. Immunodetection of membrane-

bound proteins was performed as described in Figure 2C. Please

note that dTRAF1 binds to PIPs similarly to the human TRAF4.

(TIF)

Figure S4 Crystal structure representing exposed basic
residues of the TRAF domain of TRAF4 selected for
mutagenesis. Top view (left) and bottom view (right) of the

surface representation of the TRAF domain of TRAF4. The three

TRAF monomers are colored in magenta, cyan, and green,

respectively. Surface-exposed basic residues selected for the

mutagenesis assay are colored in red.

(TIF)

Figure S5 The TRAF-K345E mutant is trimeric. The

quaternary structures of wild-type and K345E TRAF4-TRAF

domains were analyzed by gel filtration (A) and dynamic light

scattering (B) experiments. (A) Gel filtration was performed with

1 ml containing 1 mg and 0.3 mg of WT and K345E mutant

TRAF domains, respectively. Both WT and mutant TRAF

domains eluted in the same fractions, which indicates that their

sizes are similar. (B) Dynamic light scattering performed using

20 mM WT and K345E mutant TRAF domain of TRAF4
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indicated that both WT and mutant TRAF domains have similar

radii.

(TIF)

Figure S6 TRAF4 stimulates migration of MCF10A cells.
(A) Western blot analysis of TRAF4 expression. In MCF10A cells,

TRAF4 expression has been silenced (lanes 2–6), increased (lane

8), and restored in silenced cells using the WT (lane 5) and the

K345E mutant (lane 6). Parental (lane 1), control shRNA (lane

2), and control expression vector (lane 7) together with a

TRAF4-silenced line transduced with the empty vector (lane 4)

were used as controls. TRAF4 expression levels were normal-

ized to control parental cells using b-actin as loading control;

values are indicated on the top. (B) Representative microscopic

field of the bottom side of the transwell. Migrating cell nuclei

were stained with Hoechst, and images are shown as inverted

look-up table. (C) Bar chart representing the quantification of

cell migration in MCF10A cells. The number of cells that

migrated were counted and normalized to control parental cells.

Thirty-six microscopic fields from three independent experi-

ments were used for the quantification.

(TIF)

Table S1 Data collection and refinement statistics.
Values in parentheses are for the outermost resolution shell.

(DOC)
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