P. Lefebvre, B. Cariou, and F. Lien, Role of bile acids and bile acid receptors in metabolic regulation, Physiol Rev, vol.89, pp.147-191, 2009.

Z. R. Vlahcevic, R. T. Stravitz, and D. M. Heuman, Quantitative estimations of the contribution of different bile acid pathways to total bile acid synthesis in the rat, Gastroenterology, vol.113, pp.1949-1957, 1997.

W. C. Duane and N. B. Javitt, 27-hydroxycholesterol: production rates in normal human subjects, J Lipid Res, vol.40, pp.1194-1199, 1999.

S. Takahashi, T. Fukami, and Y. Masuo, Cyp2c70 is responsible for the species difference in bile acid metabolism between mice and humans, J Lipid Res, vol.57, pp.2130-2137, 2016.

H. Duez, J. N. Veen, . Van-der, and C. Duhem, Regulation of bile acid synthesis by the nuclear receptor Rev-erbalpha, Gastroenterology, vol.135, pp.689-698, 2008.

S. Han, S. S. Han, and R. Zhang, Circadian control of bile acid synthesis by a KLF15-Fgf15 axis, Nat Commun, vol.6, p.7231, 2015.

B. Goodwin, S. A. Jones, and R. R. Price, A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis, Mol Cell, vol.6, pp.517-526, 2000.

T. Inagaki, M. Choi, and A. Moschetta, Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis, Cell Metab, vol.2, pp.217-225, 2005.

J. M. Ridlon, S. C. Harris, and S. Bhowmik, Consequences of bile salt biotransformations by intestinal bacteria, Gut Microbes, vol.7, pp.22-39, 2016.

J. M. Ridlon, D. Kang, and P. B. Hylemon, Bile salt biotransformations by human intestinal bacteria, J Lipid Res, vol.47, pp.241-259, 2006.

C. Steiner, A. G. Holleboom, and R. Karuna, Lipoprotein distribution and serum concentrations of 7?-hydroxy-4-cholesten-3-one and bile acids: effects of monogenic disturbances in high-density lipoprotein metabolism, Clin Sci, vol.122, pp.385-400, 2012.

A. S. Devlin and M. A. Fischbach, A biosynthetic pathway for a prominent class of microbiota-derived bile acids, Nat Chem Biol, vol.11, pp.685-690, 2015.

S. Devkota, Y. Wang, and M. W. Musch, Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/-mice, Nature, vol.487, pp.104-108, 2012.

S. A. Joyce, J. Macsharry, and P. G. Casey, Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut, Proc Natl Acad Sci U S A, vol.111, pp.7421-7426, 2014.

J. R. Swann, E. J. Want, and F. M. Geier, Systemic gut microbial modulation of bile acid metabolism in host tissue compartments, Proc Natl Acad Sci U S A, vol.108, pp.4523-4530, 2011.

S. I. Sayin, A. Wahlström, and J. Felin, Gut Microbiota Regulates Bile Acid Metabolism by Reducing the Levels of Tauro-beta-muricholic Acid, a Naturally Occurring FXR Antagonist, Cell Metab, vol.17, pp.225-235, 2013.

C. Degirolamo, S. Rainaldi, and F. Bovenga, Microbiota Modification with Probiotics Induces Hepatic Bile Acid Synthesis via Downregulation of the Fxr-Fgf15 Axis in Mice, Cell Rep, vol.7, pp.12-18, 2014.

A. Wahlström, P. Kovatcheva-datchary, and M. Ståhlman, Induction of FXR signaling in germ-free mice colonized with a human microbiota, J Lipid Res, 2016.

J. Boursier and A. M. Diehl, Implication of gut microbiota in nonalcoholic fatty liver disease, PLoS Pathog, vol.11, p.1004559, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01392313

R. A. Haeusler, B. Astiarraga, and S. Camastra, Human insulin resistance is associated with increased plasma levels of 12?-hydroxylated bile acids, Diabetes, vol.62, pp.4184-4191, 2013.

A. D. Lake, P. Novak, and P. Shipkova, Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease, Toxicol Appl Pharmacol, vol.268, pp.132-140, 2013.

P. Prinz, T. Hofmann, and A. Ahnis, Plasma bile acids show a positive correlation with body mass index and are negatively associated with cognitive restraint of eating in obese patients, Front Neurosci, vol.9, p.199, 2015.

M. Mouzaki, A. Y. Wang, and R. Bandsma, Bile Acids and Dysbiosis in Non-Alcoholic Fatty Liver Disease, PloS One, vol.11, p.151829, 2016.

A. Vrieze, C. Out, and S. Fuentes, Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity, J Hepatol, vol.60, pp.824-831, 2014.

C. Jiang, C. Xie, and F. Li, Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease, J Clin Invest, vol.125, pp.386-402, 2015.

V. Stadlbauer, B. Leber, and S. Lemesch, Lactobacillus casei Shirota Supplementation Does Not Restore Gut Microbiota Composition and Gut Barrier in Metabolic Syndrome: A Randomized Pilot Study, PloS One, vol.10, p.141399, 2015.

D. Reijnders, G. H. Goossens, and G. Hermes, Effects of Gut Microbiota Manipulation by Antibiotics on Host Metabolism in Obese Humans: A Randomized DoubleBlind Placebo-Controlled Trial, Cell Metab, vol.24, pp.63-74, 2016.

D. E. Lackey and J. M. Olefsky, Regulation of metabolism by the innate immune system, Nat Rev Endocrinol, vol.12, pp.15-28, 2016.

T. Li, A. Jahan, and J. Chiang, Bile acids and cytokines inhibit the human cholesterol 7?-hydroxylase gene via the JNK/c-Jun pathway, Hepatology, vol.43, pp.1202-1210, 2006.

B. C. Ferslew, G. Xie, and C. K. Johnston, Altered Bile Acid Metabolome in Patients with Nonalcoholic Steatohepatitis, Dig Dis Sci, vol.60, pp.3318-3328, 2015.

M. M. Aranha, H. Cortez-pinto, and A. Costa, Bile acid levels are increased in the liver of patients with steatohepatitis, Eur J Gastroenterol Hepatol, vol.20, pp.519-525, 2008.

V. Spinelli, F. Lalloyer, and G. Baud, Influence of Roux-en-Y gastric bypass on plasma bile acid profiles: a comparative study between rats, pigs and humans, Int J Obes, vol.40, pp.1260-1267, 2005.

P. Jansen and E. Werven-j-van,-aarts, Alterations of hormonally active fibroblast growth factors after Roux-en-Y gastric bypass surgery, Dig Dis Basel Switz, vol.29, pp.48-51, 2011.

D. J. Pournaras, C. Glicksman, and R. P. Vincent, The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control, Endocrinology, vol.153, pp.3613-3619, 2012.

R. Dutia, M. Embrey, and C. S. O'brien, Temporal changes in bile acid levels and 12?-hydroxylation after Roux-en-Y gastric bypass surgery in type 2 diabetes, Int J Obes, vol.39, pp.806-813, 2005.

M. Simonen, N. Dali-youcef, and D. Kaminska, Conjugated bile acids associate with altered rates of glucose and lipid oxidation after Roux-en-Y gastric bypass, Obes Surg, vol.22, pp.1473-1480, 2012.

M. Werling, R. P. Vincent, and G. F. Cross, Enhanced fasting and post-prandial plasma bile acid responses after Roux-en-Y gastric bypass surgery, Scand J Gastroenterol, vol.48, pp.1257-1264, 2013.

R. E. Steinert, R. Peterli, and S. Keller, Bile acids and gut peptide secretion after bariatric surgery: A 1-year prospective randomized pilot trial, Obesity, vol.21, pp.660-668, 2013.

R. Kohli, D. Bradley, and K. D. Setchell, Weight loss induced by Roux-en-Y gastric bypass but not laparoscopic adjustable gastric banding increases circulating bile acids, J Clin Endocrinol Metab, vol.98, pp.708-712, 2013.

N. N. Ahmad, A. Pfalzer, and L. M. Kaplan, Roux-en-Y gastric bypass normalizes the blunted postprandial bile acid excursion associated with obesity, Int J Obes, vol.37, pp.1553-1559, 2013.

S. Sachdev, Q. Wang, and C. Billington, FGF 19 and Bile Acids Increase Following Roux-en-Y Gastric Bypass but Not After Medical Management in Patients with Type 2 Diabetes, Obes Surg, vol.26, pp.957-965, 2016.

C. Dirksen, N. B. Jørgensen, and K. N. Bojsen-møller, Gut hormones, early dumping and resting energy expenditure in patients with good and poor weight loss response after Roux-en-Y gastric bypass, Int J Obes, vol.37, pp.1452-1459, 2005.

G. S. Gerhard, A. M. Styer, and G. C. Wood, A role for fibroblast growth factor 19 and bile acids in diabetes remission after Roux-en-Y gastric bypass, Diabetes Care, vol.36, pp.1859-1864, 2013.

D. Haluzíková, Z. Lacinová, and P. Kaválková, Laparoscopic sleeve gastrectomy differentially affects serum concentrations of FGF-19 and FGF-21 in morbidly obese subjects, Obes Silver Spring Md, vol.21, pp.1335-1342, 2013.

D. Goncalves, A. Barataud, D. Vadder, and F. , Bile Routing Modification Reproduces Key Features of Gastric Bypass in Rat, Ann Surg, vol.262, pp.1006-1015, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01350737

H. Y. Bhutta, N. Rajpal, and W. White, Effect of Roux-en-Y gastric bypass surgery on bile acid metabolism in normal and obese diabetic rats, PloS One, vol.10, p.122273, 2015.

A. P. Liou, M. Paziuk, and J. Luevano, Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity, Sci Transl Med, vol.5, pp.178-219, 2013.

K. K. Ryan, V. Tremaroli, and C. Clemmensen, FXR is a molecular target for the effects of vertical sleeve gastrectomy, Nature, vol.509, pp.183-188, 2014.

M. Patti, S. M. Houten, and A. C. Bianco, Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism, Obes Silver Spring Md, vol.17, pp.1671-1677, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00420817

L. Ding, K. M. Sousa, and L. Jin, Vertical sleeve gastrectomy activates GPBAR

, /TGR5 to sustain weight loss, improve fatty liver, and remit insulin resistance in mice, Hepatology, vol.64, pp.760-773, 2016.

A. K. Mcgavigan, D. Garibay, and Z. M. Henseler, TGR5 contributes to glucoregulatory improvements after vertical sleeve gastrectomy in mice, Gut, pp.2015-309871, 2015.

H. Wang, J. Chen, and K. Hollister, Endogenous bile acids are ligands for the nuclear receptor FXR/BAR, Mol Cell, vol.3, pp.543-553, 1999.

M. Makishima, T. T. Lu, and W. Xie, Vitamin D receptor as an intestinal bile acid sensor, Science, vol.296, pp.1313-1316, 2002.

J. L. Staudinger, B. Goodwin, and S. A. Jones, The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity, Proc Natl Acad Sci U S A, vol.98, pp.3369-3374, 2001.

Y. Kawamata, R. Fujii, and M. Hosoya, A G protein-coupled receptor responsive to bile acids, J Biol Chem, vol.278, pp.9435-9440, 2003.

M. Nagahashi, K. Yuza, and Y. Hirose, The roles of bile acids and sphingosine-1-phosphate signaling in the hepatobiliary diseases, J Lipid Res, vol.57, pp.1636-1643, 2016.

S. H. Sheikh-abdul-kadir, M. Miragoli, and S. Abu-hayyeh, Bile acid-induced arrhythmia is mediated by muscarinic M2 receptors in neonatal rat cardiomyocytes, PloS One, vol.5, p.9689, 2010.

S. Han and J. Chiang, Mechanism of vitamin D receptor inhibition of cholesterol 7alpha-hydroxylase gene transcription in human hepatocytes, Drug Metab Dispos Biol Fate Chem, vol.37, pp.469-478, 2009.

L. B. Moore, J. M. Maglich, and D. D. Mckee, Pregnane X receptor (PXR), constitutive androstane receptor (CAR), and benzoate X receptor (BXR) define three pharmacologically distinct classes of nuclear receptors, Mol Endocrinol, vol.16, pp.977-986, 2002.

J. M. Lee, M. Wagner, and R. Xiao, Nutrient-sensing nuclear receptors coordinate autophagy, Nature, vol.516, pp.112-115, 2014.

S. Seok, T. Fu, and S. Choi, Transcriptional regulation of autophagy by an FXR-CREB axis, Nature, vol.516, pp.108-111, 2014.

W. Berrabah, P. Aumercier, and C. Gheeraert, Glucose sensing O-GlcNAcylation pathway regulates the nuclear bile acid receptor farnesoid X receptor (FXR), Hepatology, vol.59, pp.2022-2033, 2014.

J. K. Kemper, Z. Xiao, and B. Ponugoti, FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states, Cell Metab, vol.10, pp.392-404, 2009.

F. Lien, A. Berthier, and E. Bouchaert, Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk, J Clin Invest, vol.124, pp.1037-1051, 2014.

R. Gineste, A. Sirvent, and R. Paumelle, Phosphorylation of farnesoid X receptor by protein kinase C promotes its transcriptional activity, Mol Endocrinol, vol.22, pp.2433-2447, 2008.

T. Hashiguchi, S. Arakawa, and S. Takahashi, Phosphorylation of Farnesoid X Receptor at Serine 154 Links Ligand Activation With Degradation, Mol Endocrinol, vol.30, pp.1070-1080, 2016.

D. Kim, X. Z. Kwon, and S. , A dysregulated acetyl/SUMO switch of FXR promotes hepatic inflammation in obesity, EMBO J, vol.34, pp.184-199, 2015.

F. Reimann, A. M. Habib, and G. Tolhurst, Glucose sensing in L cells: a primary cell study, Cell Metab, vol.8, pp.532-539, 2008.

C. Thomas, A. Gioiello, and L. Noriega, TGR5-mediated bile acid sensing controls glucose homeostasis, Cell Metab, vol.10, pp.167-177, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00420823

M. Nagahashi, K. Takabe, and R. Liu, Conjugated bile acid-activated S1P receptor 2 is a key regulator of sphingosine kinase 2 and hepatic gene expression, Hepatology, vol.61, pp.1216-1226, 2015.

B. Cariou and D. Harmelen-k-van,-duran-sandoval, The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice, J Biol Chem, vol.281, pp.11039-11049, 2006.

M. Abdelkarim, S. Caron, and C. Duhem, The farnesoid X receptor regulates adipocyte differentiation and function by promoting peroxisome proliferator-activated receptor-gamma and interfering with the Wnt/beta-catenin pathways, J Biol Chem, vol.285, pp.36759-36767, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00523541

M. Watanabe, S. M. Houten, and C. Mataki, Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation, Nature, vol.439, pp.484-489, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00188183

E. Broeders, E. Nascimento, and B. Havekes, The Bile Acid Chenodeoxycholic Acid Increases Human Brown Adipose Tissue Activity, Cell Metab, vol.22, pp.418-426, 2015.

A. Parséus, N. Sommer, and F. Sommer, Microbiota-induced obesity requires farnesoid X receptor, Gut, 2016.

G. Rizzo, M. Disante, and A. Mencarelli, The farnesoid X receptor promotes adipocyte differentiation and regulates adipose cell function in vivo, Mol Pharmacol, vol.70, pp.1164-1173, 2006.

L. Fu, L. M. John, and S. H. Adams, Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes, Endocrinology, vol.145, pp.2594-2603, 2004.

S. Fang, J. M. Suh, and S. M. Reilly, Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance, Nat Med, vol.21, pp.159-165, 2015.

M. Watanabe, S. M. Houten, and L. Wang, Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c, J Clin Invest, vol.113, pp.1408-1418, 2004.

S. Bhatnagar, H. A. Damron, and F. B. Hillgartner, Fibroblast growth factor-19, a novel factor that inhibits hepatic fatty acid synthesis, J Biol Chem, vol.284, pp.10023-10033, 2009.

H. Hirokane, M. Nakahara, and S. Tachibana, Bile acid reduces the secretion of very

, J Biol Chem, vol.279, pp.45685-45692, 2004.

H. R. Kast, C. M. Nguyen, and C. J. Sinal, Farnesoid X-activated receptor induces apolipoprotein C-II transcription: a molecular mechanism linking plasma triglyceride levels to bile acids, Mol Endocrinol, vol.15, pp.1720-1728, 2001.

T. Claudel, Y. Inoue, and O. Barbier, Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expression, Gastroenterology, vol.125, pp.544-555, 2003.

A. Sirvent, T. Claudel, and G. Martin, The farnesoid X receptor induces very low density lipoprotein receptor gene expression, FEBS Lett, vol.566, pp.173-177, 2004.

I. Chennamsetty, T. Claudel, and K. M. Kostner, FGF19 signaling cascade suppresses APOA gene expression, Arterioscler Thromb Vasc Biol, vol.32, pp.1220-1227, 2012.

T. Claudel, E. Sturm, and H. Duez, Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element, J Clin Invest, vol.109, pp.961-971, 2002.

Y. Zhang, L. Yin, and J. Anderson, Identification of novel pathways that control farnesoid X receptor-mediated hypocholesterolemia, J Biol Chem, vol.285, pp.3035-3043, 2010.

T. Gautier, . Haan-w-de, and J. Grober, Farnesoid X receptor activation increases cholesteryl ester transfer protein expression in humans and transgenic mice, J Lipid Res, vol.54, pp.2195-2205, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01953523

Y. Wang, P. Jones, and L. A. Woollett, Effects of chenodeoxycholic acid and deoxycholic acid on cholesterol absorption and metabolism in humans, Transl Res J Lab Clin Med, vol.148, pp.37-45, 2006.

B. A. Neuschwander-tetri, R. Loomba, and A. J. Sanyal, Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial, Lancet Lond Engl, vol.385, pp.956-965, 2015.

L. Nilsson, A. Abrahamsson, and S. Sahlin, Bile acids and lipoprotein metabolism: effects of cholestyramine and chenodeoxycholic acid on human hepatic mRNA expression, Biochem Biophys Res Commun, vol.357, pp.707-711, 2007.

Y. Xu, F. Li, and M. Zalzala, Farnesoid X receptor activation increases reverse cholesterol transport by modulating bile acid composition and cholesterol absorption in mice, Hepatology, vol.64, pp.1072-1085, 2016.

J. M. Ferrell, S. Boehme, and F. Li, Cholesterol 7?-hydroxylase-deficient mice are protected from high-fat/high-cholesterol diet-induced metabolic disorders, J Lipid Res, vol.57, pp.1144-1154, 2016.

J. F. Boer, . De, M. Schonewille, and M. Boesjes, Article in press. 95. Anon. The Lipid Research Clinics Coronary Primary Prevention Trial results. I. Reduction in incidence of coronary heart disease, Gastroenterology, vol.251, pp.351-364, 1984.

S. Zweers, K. Booij, and M. Komuta, The human gallbladder secretes fibroblast growth factor 19 into bile: towards defining the role of fibroblast growth factor 19 in the enterobiliary tract, Hepatology, vol.55, pp.575-583, 2012.

A. Picard, J. Soyer, and X. Berney, A Genetic Screen Identifies Hypothalamic Fgf15 as a Regulator of Glucagon Secretion, Cell Rep, vol.17, pp.1795-1806, 2016.

. Dijk-th-van, A. Grefhorst, and M. H. Oosterveer, An increased flux through the glucose 6-phosphate pool in enterocytes delays glucose absorption in Fxr-/-mice, J Biol Chem, vol.284, pp.10315-10323, 2009.

D. Duran-sandoval, B. Cariou, and F. Percevault, The farnesoid X receptor modulates hepatic carbohydrate metabolism during the fasting-refeeding transition, J Biol Chem, vol.280, pp.29971-29979, 2005.

S. Caron, H. Samanez, C. Dehondt, and H. , Farnesoid X receptor inhibits the transcriptional activity of carbohydrate response element binding protein in human hepatocytes, Mol Cell Biol, vol.33, pp.2202-2211, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00806064

S. Kir, S. A. Beddow, and V. T. Samuel, FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis, Science, vol.331, pp.1621-1624, 2011.

S. Katsuma, A. Hirasawa, and G. Tsujimoto, Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1, Biochem Biophys Res Commun, vol.329, pp.386-390, 2005.

C. A. Brighton, J. Rievaj, and R. E. Kuhre, Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein-Coupled Bile Acid Receptors, Endocrinology, vol.156, pp.3961-3970, 2015.

M. Trabelsi, M. Daoudi, and J. Prawitt, Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells, Nat Commun, vol.6, p.7629, 2015.

I. R. Popescu, A. Helleboid-chapman, and A. Lucas, The nuclear receptor FXR is expressed in pancreatic beta-cells and protects human islets from lipotoxicity, FEBS Lett, vol.584, pp.2845-2851, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00485665

D. P. Kumar, S. Rajagopal, and S. Mahavadi, Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic ? cells, Biochem Biophys Res Commun, vol.427, pp.600-605, 2012.

D. P. Kumar, A. Asgharpour, and F. Mirshahi, Activation of Transmembrane Bile Acid Receptor TGR5 Modulates Pancreatic Islet ? Cells to Promote Glucose Homeostasis, J Biol Chem, vol.291, pp.6626-6640, 2016.

P. Seyer, D. Vallois, and C. Poitry-yamate, Hepatic glucose sensing is required to preserve ? cell glucose competence, J Clin Invest, vol.123, pp.1662-1676, 2013.

G. Smushkin, M. Sathananthan, and F. Piccinini, The effect of a bile acid sequestrant on glucose metabolism in subjects with type 2 diabetes, Diabetes, vol.62, pp.1094-1101, 2013.

F. Li, C. Jiang, and K. W. Krausz, Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity, Nat Commun, vol.4, p.2384, 2013.

C. Jiang, C. Xie, and Y. Lv, Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction, Nat Commun, vol.6, p.10166, 2015.

B. M. Mcgettigan, R. H. Mcmahan, and Y. Luo, Sevelamer Improves Steatohepatitis, Inhibits Liver and Intestinal Farnesoid X Receptor (FXR), and Reverses Innate Immune Dysregulation in a Mouse Model of Non-alcoholic Fatty Liver Disease, J Biol Chem, vol.291, pp.23058-23067, 2016.

A. Kaur, J. V. Patankar, and . Haan-w-de, Loss of Cyp8b1 improves glucose homeostasis by increasing GLP-1, Diabetes, vol.64, pp.1168-1179, 2015.

K. Yamagata, H. Daitoku, and Y. Shimamoto, Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1, J Biol Chem, vol.279, pp.23158-23165, 2004.

K. Ma, P. K. Saha, and L. Chan, Farnesoid X receptor is essential for normal glucose homeostasis, J Clin Invest, vol.116, pp.1102-1109, 2006.

K. R. Stayrook, K. S. Bramlett, and R. S. Savkur, Regulation of carbohydrate metabolism by the farnesoid X receptor, Endocrinology, vol.146, pp.984-991, 2005.

S. Mudaliar, R. R. Henry, and A. J. Sanyal, Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease, Gastroenterology, vol.145, pp.574-582, 2013.

N. D. Lewis, L. A. Patnaude, and J. Pelletier, A GPBAR1 (TGR5) small molecule agonist shows specific inhibitory effects on myeloid cell activation in vitro and reduces experimental autoimmune encephalitis (EAE) in vivo, PloS One, vol.9, p.100883, 2014.

V. Keitel, M. Donner, and S. Winandy, Expression and function of the bile acid receptor TGR5 in Kupffer cells, Biochem Biophys Res Commun, vol.372, pp.78-84, 2008.

R. Ichikawa, T. Takayama, and K. Yoneno, Bile acids induce monocyte differentiation toward interleukin-12 hypo-producing dendritic cells via a TGR5-dependent pathway, Immunology, vol.136, pp.153-162, 2012.

C. Guo, S. Xie, and Z. Chi, Bile Acids Control Inflammation and Metabolic Disorder through Inhibition of NLRP3 Inflammasome, Immunity, vol.45, pp.802-816, 2016.

Y. Wang, W. Chen, and D. Yu, The G-protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulates hepatic inflammatory response through antagonizing nuclear factor ? light-chain enhancer of activated B cells (NF-?B) in mice, Hepatology, vol.54, pp.1421-1432, 2011.

T. Pols, M. Nomura, and T. Harach, TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading, Cell Metab, vol.14, pp.747-757, 2011.

H. Liu, P. Pathak, and S. Boehme, Cholesterol 7?-hydroxylase protects the liver from inflammation and fibrosis by maintaining cholesterol homeostasis, J Lipid Res, vol.57, pp.1831-1844, 2016.

R. M. Gadaleta, K. J. Erpecum, . Van, and B. Oldenburg, Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease, Gut, vol.60, pp.463-472, 2011.

P. Vavassori, A. Mencarelli, and B. Renga, The bile acid receptor FXR is a modulator of intestinal innate immunity, J Immunol, vol.183, pp.6251-6261, 2009.

T. Inagaki, A. Moschetta, and Y. Lee, Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor, Proc Natl Acad Sci, vol.103, pp.3920-3925, 2006.

H. B. Schiöth, A. Boström, and S. K. Murphy, A targeted analysis reveals relevant shifts in the methylation and transcription of genes responsible for bile acid homeostasis and drug metabolism in non-alcoholic fatty liver disease, BMC Genomics, vol.17, p.462, 2016.

L. Verbeke, I. Mannaerts, and R. Schierwagen, FXR agonist obeticholic acid reduces hepatic inflammation and fibrosis in a rat model of toxic cirrhosis, Sci Rep, vol.6, p.33453, 2016.

P. Fickert, A. Fuchsbichler, and T. Moustafa, Am J Pathol, vol.175, pp.2392-2405, 2009.

R. E. Feaver, B. K. Cole, and M. J. Lawson, Development of an in vitro human liver system for interrogating nonalcoholic steatohepatitis, JCI Insight, vol.1, p.90954, 2016.

R. Pencek, T. Marmon, and J. D. Roth, Effects of obeticholic acid on lipoprotein metabolism in healthy volunteers, Diabetes Obes Metab, vol.18, pp.936-940, 2016.

M. Camilleri and G. J. Gores, Therapeutic targeting of bile acids, Am J Physiol Gastrointest Liver Physiol, vol.309, pp.209-215, 2015.

F. G. Schaap, M. Trauner, and P. Jansen, Bile acid receptors as targets for drug development, Nat Rev Gastroenterol Hepatol, vol.11, pp.55-67, 2014.

H. Duan, M. Ning, and Q. Zou, Discovery of Intestinal Targeted TGR5 Agonists for the Treatment of Type 2 Diabetes, J Med Chem, vol.58, pp.3315-3328, 2015.

D. A. Briere, X. Ruan, and C. C. Cheng, Novel Small Molecule Agonist of TGR5 Possesses Anti-Diabetic Effects but Causes Gallbladder Filling in Mice, PloS One, vol.10, p.136873, 2015.

F. Alemi, E. Kwon, and D. P. Poole, The TGR5 receptor mediates bile acid-induced itch and analgesia, J Clin Invest, vol.123, pp.1513-1530, 2013.

H. Ge, J. Zhang, and Y. Gong, Fibroblast growth factor receptor 4 (FGFR4) deficiency improves insulin resistance and glucose metabolism under diet-induced obesity conditions, J Biol Chem, vol.289, pp.30470-30480, 2014.

A. Rao, A. Kosters, and J. E. Mells, Inhibition of ileal bile acid uptake protects against nonalcoholic fatty liver disease in high-fat diet-fed mice, Sci Transl Med, vol.8, pp.357-122, 2016.

N. Beraza, L. Ofner-ziegenfuss, and H. Ehedego, Nor-ursodeoxycholic acid reverses hepatocyte-specific nemo-dependent steatohepatitis, Gut, vol.60, pp.387-396, 2011.

M. Trauner, E. Halilbasic, and T. Claudel, Potential of nor-Ursodeoxycholic Acid in Cholestatic and Metabolic Disorders, Dig Dis Basel Switz, vol.33, pp.433-439, 2015.

M. Mueller, A. Thorell, and T. Claudel, Ursodeoxycholic acid exerts farnesoid X receptor-antagonistic effects on bile acid and lipid metabolism in morbid obesity, J Hepatol, vol.62, pp.1398-1404, 2015.

M. Downes, M. A. Verdecia, and A. J. Roecker, A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR, Mol Cell, vol.11, pp.1079-1092, 2003.

, GLP-1 (glucagon-like peptide-1)

, GS (glycogen synthase

, GSK3 (glycogen synthase kinase 3)

, INSR (insulin receptor

, SHP (short heterodimer protein

, TGR5 (Takeda G protein-coupled receptor 5)

L. ,

, OST?/? (organic solute transporters ? and ?)

, VLDL (very low density lipoprotein)

, Abbreviations: AMPK (AMP-activated protein kinase)

, ChREBP (carbohydrate responsive element binding protein)

, ER (endoplasmic reticulum

, FGF15/19 (fibroblast growth factor 15/19)

, GLP-1 (glucagon-like peptide-1)

, HSC (hepatic stellate cell

, LKB1 (liver kinase B1)

L. , liver pyruvate kinase); miR (micro RNA)

, SHP (small heterodimer protein

, Abbreviations: BMI (body mass index

, GBMIL (patients with good body mass index loss after RYGB)

. Gc-ms,

, IR

. Lc-ms,

. Lc-ms/ms, chromatography-tandem mass spectrometry); m (months)

, OGTT (oral glucose tolerance test)

, PBMIL (patients with poor body mass index loss after RYGB)

, RYGB (Roux-en-y gastric bypass)

, TG (triglycerides)

. T2d-nr,

, T2D-R (type 2 diabetes with remission); UPLC-MS/MS (ultra-performance liquid chromatography-tandem mass spectrometer)

P. Prinz, T. Hofmann, and A. Ahnis, Plasma bile acids show a positive correlation with body mass index and are negatively associated with cognitive restraint of eating in obese patients, Front Neurosci, vol.9, p.199, 2015.

D. P. Sonne, F. S. Nierop, . Van, and W. Kulik, Postprandial Plasma Concentrations of Individual Bile Acids and FGF-19 in Patients With Type 2 Diabetes, J Clin Endocrinol Metab, vol.101, pp.3002-3009, 2016.

R. A. Haeusler, B. Astiarraga, and S. Camastra, Human insulin resistance is associated with increased plasma levels of 12?-hydroxylated bile acids, Diabetes, vol.62, pp.4184-4191, 2013.

R. P. Vincent, S. Omar, and S. Ghozlan, Higher circulating bile acid concentrations in obese patients with type 2 diabetes, Ann Clin Biochem, vol.50, pp.360-364, 2013.

M. Wewalka, M. Patti, and C. Barbato, Fasting serum taurine-conjugated bile acids are elevated in type 2 diabetes and do not change with intensification of insulin, J Clin Endocrinol Metab, vol.99, pp.1442-1451, 2014.

B. Cariou, M. Chetiveaux, and Y. Zaïr, Fasting plasma chenodeoxycholic acid and cholic acid concentrations are inversely correlated with insulin sensitivity in adults, Nutr Metab, vol.8, p.48, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00611430

B. C. Ferslew, G. Xie, and C. K. Johnston, Altered Bile Acid Metabolome in Patients with Nonalcoholic Steatohepatitis, Dig Dis Sci, vol.60, pp.3318-3328, 2015.

M. Patti, S. M. Houten, and A. C. Bianco, Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism, Obes Silver Spring Md, vol.17, pp.1671-1677, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00420817

H. Nakatani, K. Kasama, and T. Oshiro, Serum bile acid along with plasma incretins and serum high-molecular weight adiponectin levels are increased after bariatric surgery, Metabolism, vol.58, pp.1400-1407, 2009.

P. Jansen and E. Werven-j-van,-aarts, Alterations of hormonally active fibroblast growth factors after Roux-en-Y gastric bypass surgery, Dig Dis, vol.29, pp.48-51, 2011.

D. J. Pournaras, C. Glicksman, and R. P. Vincent, The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control, Endocrinology, vol.153, pp.3613-3619, 2012.

M. Simonen, N. Dali-youcef, and D. Kaminska, Conjugated bile acids associate with altered rates of glucose and lipid oxidation after Roux-en-Y gastric bypass, Obes Surg, vol.22, pp.1473-1480, 2012.

G. S. Gerhard, A. M. Styer, and G. C. Wood, A role for fibroblast growth factor 19 and bile acids in diabetes remission after Roux-en-Y gastric bypass, Diabetes Care, vol.36, pp.1859-1864, 2013.

R. Kohli, D. Bradley, and K. D. Setchell, Weight loss induced by Roux-en-Y gastric bypass but not laparoscopic adjustable gastric banding increases circulating bile acids, J Clin Endocrinol Metab, vol.98, pp.708-712, 2013.

V. L. Albaugh, C. R. Flynn, and S. Cai, Early Increases in Bile Acids Post Roux-en-Y Gastric Bypass Are Driven by Insulin-Sensitizing, Secondary Bile Acids, J Clin Endocrinol Metab, vol.100, pp.1225-1233, 2015.

S. Sachdev, Q. Wang, and C. Billington, FGF 19 and Bile Acids Increase Following Rouxen-Y Gastric Bypass but Not After Medical Management in Patients with Type 2 Diabetes, Obes Surg, vol.26, pp.957-965, 2016.

R. E. Steinert, R. Peterli, and S. Keller, Bile acids and gut peptide secretion after bariatric surgery: A 1-year prospective randomized pilot trial, Obesity, vol.21, pp.660-668, 2013.

M. Werling, R. P. Vincent, and G. F. Cross, Enhanced fasting and post-prandial plasma bile acid responses after Roux-en-Y gastric bypass surgery, Scand J Gastroenterol, vol.48, pp.1257-1264, 2013.

R. Dutia, M. Embrey, and C. S. O'brien, Temporal changes in bile acid levels and 12?-hydroxylation after Roux-en-Y gastric bypass surgery in type 2 diabetes, Int J Obes, vol.39, pp.806-813, 2015.

N. B. Jørgensen, C. Dirksen, and K. N. Bojsen-møller, Improvements in glucose metabolism early after gastric bypass surgery are not explained by increases in total bile acids and fibroblast growth factor 19 concentrations, J Clin Endocrinol Metab, vol.100, pp.396-406, 2015.

N. N. Ahmad, A. Pfalzer, and L. M. Kaplan, Roux-en-Y gastric bypass normalizes the blunted postprandial bile acid excursion associated with obesity, Int J Obes, vol.37, pp.1553-1559, 2013.

C. Dirksen, N. B. Jørgensen, and K. N. Bojsen-møller, Gut hormones, early dumping and resting energy expenditure in patients with good and poor weight loss response after Roux-en-Y gastric bypass, Int J Obes, vol.37, pp.1452-1459, 2005.

D. Haluzíková, Z. Lacinová, and P. Kaválková, Laparoscopic sleeve gastrectomy differentially affects serum concentrations of FGF-19 and FGF-21 in morbidly obese subjects, Obes Silver Spring Md, vol.21, pp.1335-1342, 2013.

E. Ferrannini, S. Camastra, and B. Astiarraga, Increased Bile Acid Synthesis and Deconjugation After Biliopancreatic Diversion, Diabetes, vol.64, pp.3377-3385, 2015.

P. Lefebvre, B. Cariou, and F. Lien, Role of bile acids and bile acid receptors in metabolic regulation, Physiol Rev, vol.89, pp.147-191, 2009.

P. C. Pircher, J. L. Kitto, and M. L. Petrowski, Farnesoid X receptor regulates bile acid-amino acid conjugation, J Biol Chem, vol.278, pp.27703-27711, 2003.

M. Ananthanarayanan, N. Balasubramanian, and M. Makishima, Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor, J Biol Chem, vol.276, pp.28857-28865, 2001.

J. L. Boyer, M. Trauner, and A. Mennone, Upregulation of a basolateral FXR-dependent bile acid efflux transporter OSTalpha-OSTbeta in cholestasis in humans and rodents, Am J Physiol Gastrointest Liver Physiol, vol.290, pp.1124-1130, 2006.

S. Kir, S. A. Beddow, and V. T. Samuel, FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis, Science, vol.331, pp.1621-1624, 2011.

S. Caron, H. Samanez, C. Dehondt, and H. , Farnesoid X receptor inhibits the transcriptional activity of carbohydrate response element binding protein in human hepatocytes, Mol Cell Biol, vol.33, pp.2202-2211, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00806064

L. Zhang, Y. Wang, and W. Chen, Promotion of liver regeneration/repair by farnesoid X receptor in both liver and intestine in mice, Hepatol Baltim Md, vol.56, pp.2336-2343, 2012.

L. Verbeke, I. Mannaerts, and R. Schierwagen, FXR agonist obeticholic acid reduces hepatic inflammation and fibrosis in a rat model of toxic cirrhosis, Sci Rep, vol.6, p.33453, 2016.

P. Fickert, A. Fuchsbichler, and T. Moustafa, Farnesoid X receptor critically determines the fibrotic response in mice but is expressed to a low extent in human hepatic stellate cells and periductal myofibroblasts, Am J Pathol, vol.175, pp.2392-2405, 2009.

D. P. Kumar, A. Asgharpour, and F. Mirshahi, Activation of Transmembrane Bile Acid Receptor TGR5 Modulates Pancreatic Islet ? Cells to Promote Glucose Homeostasis, J Biol Chem, vol.291, pp.6626-6640, 2016.

I. R. Popescu, A. Helleboid-chapman, and A. Lucas, The nuclear receptor FXR is expressed in pancreatic beta-cells and protects human islets from lipotoxicity, FEBS Lett, vol.584, pp.2845-2851, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00485665

B. Renga, A. Mencarelli, and P. Vavassori, The bile acid sensor FXR regulates insulin transcription and secretion, Biochim Biophys Acta, vol.1802, pp.363-372, 2010.

D. P. Kumar, S. Rajagopal, and S. Mahavadi, Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic ? cells, Biochem Biophys Res Commun, vol.427, pp.600-605, 2012.

T. Inagaki, M. Choi, and A. Moschetta, Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis, Cell Metab, vol.2, pp.217-225, 2005.

E. Neimark, F. Chen, and X. Li, Bile acid-induced negative feedback regulation of the human ileal bile acid transporter, Hepatol, vol.40, pp.149-156, 2004.

. Dijk-th-van, A. Grefhorst, and M. H. Oosterveer, An increased flux through the glucose 6-phosphate pool in enterocytes delays glucose absorption in Fxr-/-mice, J Biol Chem, vol.284, pp.10315-10323, 2009.

R. M. Gadaleta, K. J. Erpecum, . Van, and B. Oldenburg, Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease, Gut, vol.60, pp.463-472, 2011.

T. Inagaki, A. Moschetta, and Y. Lee, Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor, Proc Natl Acad Sci, vol.103, pp.3920-3925, 2006.

M. Trabelsi, M. Daoudi, and J. Prawitt, Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells, Nat Commun, vol.6, p.7629, 2015.

S. Katsuma, A. Hirasawa, and G. Tsujimoto, Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1, Biochem Biophys Res Commun, vol.329, pp.386-390, 2005.

M. Watanabe, S. M. Houten, and C. Mataki, Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation, Nature, vol.439, pp.484-489, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00188183

M. Abdelkarim, S. Caron, and C. Duhem, The farnesoid X receptor regulates adipocyte differentiation and function by promoting peroxisome proliferator-activated receptorgamma and interfering with the Wnt/beta-catenin pathways, J Biol Chem, vol.285, pp.36759-36767, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00523541

T. Pols, M. Nomura, and T. Harach, TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading, Cell Metab, vol.14, pp.747-757, 2011.
DOI : 10.1016/j.cmet.2011.11.006

URL : https://doi.org/10.1016/j.cmet.2011.11.006

C. Guo, S. Xie, and Z. Chi, Bile Acids Control Inflammation and Metabolic Disorder through Inhibition of NLRP3 Inflammasome, Immunity, vol.45, pp.802-816, 2016.

V. Keitel, M. Donner, and S. Winandy, Expression and function of the bile acid receptor TGR5 in Kupffer cells, Biochem Biophys Res Commun, vol.372, pp.78-84, 2008.

R. Ichikawa, T. Takayama, and K. Yoneno, Bile acids induce monocyte differentiation toward interleukin-12 hypo-producing dendritic cells via a TGR5-dependent pathway, Immunology, vol.136, pp.153-162, 2012.
DOI : 10.1111/j.1365-2567.2012.03554.x

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2567.2012.03554.x

M. Zhou, R. M. Learned, and S. J. Rossi, Engineered fibroblast growth factor 19 reduces liver injury and resolves sclerosing cholangitis in Mdr2-deficient mice, Hepatol Baltim Md, vol.63, pp.914-929, 2016.
DOI : 10.1002/hep.28257

URL : https://aasldpubs.onlinelibrary.wiley.com/doi/pdf/10.1002/hep.28257

S. Fang, J. M. Suh, and S. M. Reilly, Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance, Nat Med, vol.21, pp.159-165, 2015.
DOI : 10.1038/nm.3760

URL : http://europepmc.org/articles/pmc4320010?pdf=render

R. M. Gadaleta, K. J. Erpecum, . Van, and B. Oldenburg, Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease, Gut, vol.60, pp.463-472, 2011.
DOI : 10.1136/gut.2010.212159

T. Inagaki, A. Moschetta, and Y. Lee, Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor, Proc Natl Acad Sci

S. , , vol.103, pp.3920-3925, 2006.

. Dijk-th-van, A. Grefhorst, and M. H. Oosterveer, An increased flux through the glucose 6-phosphate pool in enterocytes delays glucose absorption in Fxr-/-mice, J Biol Chem, vol.284, pp.10315-10323, 2009.

M. Trabelsi, M. Daoudi, and J. Prawitt, Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells, Nat Commun, vol.6, p.7629, 2015.
DOI : 10.1038/ncomms8629

URL : https://www.nature.com/articles/ncomms8629.pdf

C. Jiang, C. Xie, and F. Li, Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease, J Clin Invest, vol.125, pp.386-402, 2015.
DOI : 10.1172/jci76738

URL : http://www.jci.org/articles/view/76738/files/pdf

C. Jiang, C. Xie, and Y. Lv, Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction, Nat Commun, vol.6, p.10166, 2015.
DOI : 10.1038/ncomms10166

URL : https://www.nature.com/articles/ncomms10166.pdf

F. Li, C. Jiang, and K. W. Krausz, Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity, Nat Commun, vol.4, p.2384, 2013.
DOI : 10.1038/ncomms3384

URL : https://www.nature.com/articles/ncomms3384.pdf

L. Zhang, C. Xie, and R. G. Nichols,

P. Lefebvre, B. Cariou, and F. Lien, Role of bile acids and bile acid receptors in metabolic regulation, Physiol Rev, vol.89, pp.147-191, 2009.

F. Lian, Y. Wang, and Y. Xiao, Activated farnesoid X receptor attenuates

Z. Meng, Y. Wang, and L. Wang, FXR regulates liver repair after CCl4-induced toxic injury, Mol Endocrinol, vol.24, pp.886-897, 2010.
DOI : 10.1210/me.2009-0286

URL : https://academic.oup.com/mend/article-pdf/24/5/886/8943711/mend0886.pdf

C. G. Lee, Y. W. Kim, and E. H. Kim, Farnesoid X receptor protects hepatocytes from injury by repressing miR-199a-3p, which increases levels of LKB1, Gastroenterology, vol.142, pp.1206-1217, 2012.

L. Verbeke, I. Mannaerts, and R. Schierwagen,

P. Fickert, A. Fuchsbichler, and T. Moustafa, Farnesoid X receptor, vol.175, pp.2392-2405, 2009.

S. Caron, H. Samanez, C. Dehondt, and H. , Farnesoid X receptor Cell Biol, vol.33, pp.2202-2211, 2013.

M. Watanabe, S. M. Houten, and L. Wang, Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c, J Clin Invest, vol.113, pp.1408-1418, 2004.

X. Xiong, X. Wang, and Y. Lu, Hepatic steatosis exacerbated by, Hepatol, vol.60, pp.847-854, 2014.