J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers et al., Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012, Int J Cancer, vol.136, pp.359-86, 2015.
DOI : 10.1002/ijc.29210

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/ijc.29210

G. Turashvili and E. Brogi, Tumor heterogeneity in breast cancer, Front Med, vol.4, p.227, 2017.

D. Groheux, M. Espié, S. Giacchetti, and E. Hindié, Performance of FDG PET/CT in the clinical management of breast cancer, Radiology, vol.266, pp.388-405, 2013.

F. Cardoso, A. Costa, E. Senkus, M. Aapro, F. André et al.,

, Breast Edinb Scotl, vol.31, pp.244-59, 2017.

A. Cochet, I. Dygai-cochet, J. Riedinger, H. O. Berriolo-riedinger, A. Toubeau et al., 18 F-FDG PET/CT provides powerful prognostic stratification in the primary staging of large breast cancer when compared with conventional explorations, Eur J Nucl Med Mol Imaging, vol.41, pp.428-465, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00930891

A. Buck, H. Schirrmeister, T. Kühn, C. Shen, T. Kalker et al., FDG uptake in breast cancer: correlation with biological and clinical prognostic parameters, Eur J Nucl Med Mol Imaging, vol.29, pp.1317-1340, 2002.
DOI : 10.1007/s00259-002-0880-8

D. Groheux, S. Giacchetti, J. Moretti, R. Porcher, M. Espié et al., Correlation of high 18F-FDG uptake to clinical, pathological and biological prognostic factors in breast cancer, Eur J Nucl Med Mol Imaging, vol.38, pp.426-461, 2011.

F. Tixier, M. Hatt, C. Valla, V. Fleury, C. Lamour et al., Visual versus quantitative assessment of intratumor 18F-FDG PET uptake heterogeneity: prognostic value in non-small cell lung cancer, J Nucl Med Off Publ Soc Nucl Med, vol.55, pp.1235-1276, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01074715

G. Cook, C. Yip, M. Siddique, V. Goh, S. Chicklore et al., Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy?, J Nucl Med Off Publ Soc Nucl Med, vol.54, pp.19-26, 2013.
DOI : 10.2967/jnumed.112.107375

URL : http://jnm.snmjournals.org/content/54/1/19.full.pdf

M. Desseroit, D. Visvikis, F. Tixier, M. Majdoub, R. Perdrisot et al., Development of a nomogram combining clinical staging with (18)F-FDG PET/CT image features in non-small-cell lung cancer stage I-III, Eur J Nucl Med Mol Imaging, vol.43, pp.1477-85, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01285687

N. Cheng, Y. Fang, J. Chang, C. Huang, D. Tsan et al., Textural features of pretreatment 18F-FDG PET/CT images: prognostic significance in patients with advanced T-stage oropharyngeal squamous cell carcinoma, J Nucl Med Off Publ Soc Nucl Med, vol.54, pp.1703-1712, 2013.

F. Tixier, L. Rest, C. C. Hatt, M. Albarghach, N. Pradier et al., Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer, J Nucl Med Off Publ Soc Nucl Med, vol.52, pp.369-78, 2011.
DOI : 10.2967/jnumed.110.082404

URL : https://hal.archives-ouvertes.fr/inserm-00574272

P. Van-rossum, D. V. Fried, L. Zhang, W. L. Hofstetter, M. Van-vulpen et al., The incremental value of subjective and quantitative assessment of 18F-FDG PET for the prediction of pathologic complete response to preoperative chemoradiotherapy in esophageal cancer, J Nucl Med Off Publ Soc Nucl Med, vol.57, pp.691-700, 2016.

R. A. Bundschuh, J. Dinges, L. Neumann, M. Seyfried, N. Zsótér et al., Textural parameters of tumor heterogeneity in 18 F-FDG PET/CT for therapy response assessment and prognosis in patients with locally advanced rectal cancer, J Nucl Med Off Publ Soc Nucl Med, vol.55, pp.891-898, 2014.

N. Ohri, F. Duan, B. S. Snyder, B. Wei, M. Machtay et al., Pretreatment 18F-FDG PET textural features in locally advanced non-small cell lung cancer: secondary analysis of ACRIN 6668/RTOG 0235, J Nucl Med Off Publ Soc Nucl Med, vol.57, pp.842-850, 2016.

G. Cook, M. E. O'brien, M. Siddique, S. Chicklore, H. Y. Loi et al., Non-small cell lung cancer treated with Erlotinib: heterogeneity of (18)F-FDG uptake at PET-association with treatment response and prognosis, Radiology, vol.276, pp.883-93, 2015.

B. B. Koolen, S. Vidal-sicart, B. Baviera, J. M. , V. Olmos et al., Evaluating heterogeneity of primary tumor (18)F-FDG uptake in breast cancer with a dedicated breast PET (MAMMI): a feasibility study based on correlation with PET/CT, Nucl Med Commun, vol.35, pp.446-52, 2014.

A. Moscoso, Á. Ruibal, I. Domínguez-prado, A. Fernández-ferreiro, M. Herranz et al., Texture analysis of high-resolution dedicated breast 18 F-FDG PET images correlates with immunohistochemical factors and subtype of breast cancer, Eur J Nucl Med Mol Imaging, vol.45, pp.196-206, 2018.

M. Soussan, F. Orlhac, M. Boubaya, L. Zelek, M. Ziol et al., Relationship between tumor heterogeneity measured on FDG-PET/CT and pathological prognostic factors in invasive breast cancer, PLoS One, vol.9, p.94017, 2014.

L. Antunovic, F. Gallivanone, M. Sollini, A. Sagona, A. Invento et al., 18F]FDG PET/CT features for the molecular characterization of primary breast tumors, Eur J Nucl Med Mol Imaging, vol.44, pp.1945-54, 2017.

C. Lemarignier, A. Martineau, L. Teixeira, L. Vercellino, M. Espié et al., Correlation between tumour characteristics, SUV measurements, metabolic tumour volume, TLG and textural features assessed with 18F-FDG PET in a large cohort of oestrogen receptor-positive breast cancer patients, Eur J Nucl Med Mol Imaging, vol.44, pp.1145-54, 2017.

D. Groheux, M. Majdoub, F. Tixier, L. Rest, C. C. Martineau et al., Do clinical, histological or immunohistochemical primary tumour characteristics translate into different (18)F-FDG PET/CT volumetric and heterogeneity features in stage II/III breast cancer?, Eur J Nucl Med Mol Imaging, vol.42, pp.1682-91, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01171706

D. Bellevre, B. Fournier, C. Switsers, O. Dugué, A. E. Levy et al., Staging the axilla in breast cancer patients with 18 F-FDG PET: how small are the metastases that we can detect with new generation clinical PET systems?, Eur J Nucl Med Mol Imaging, vol.41, pp.1103-1115, 2014.

D. Koopman, J. A. Van-dalen, H. Arkies, A. Oostdijk, A. B. Francken et al., Diagnostic implications of a small-voxel reconstruction for loco-regional lymph node characterization in breast cancer patients using FDG-PET/CT, EJNMMI Res, vol.8, p.3, 2018.

D. Koopman, J. A. Van-dalen, M. Lagerweij, H. Arkies, J. De-boer et al., Improving the detection of small lesions using a state-of-the-art time-of-flight PET/CT system and small-voxel reconstructions, J Nucl Med Technol, vol.43, pp.21-28, 2015.

R. Boellaard, M. J. O'doherty, W. A. Weber, F. M. Mottaghy, M. N. Lonsdale et al., EANM procedure guidelines for tumour PET imaging: version 1.0, Eur J Nucl Med Mol Imaging, vol.37, pp.181-200, 2010.

C. Lasnon, B. Enilorac, H. Popotte, and A. N. , Impact of the EARL harmonization program on automatic delineation of metabolic active tumour volumes (MATVs), EJNMMI Res, vol.7, p.30, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01856125

C. Nioche, F. Orlhac, S. Boughdad, S. Reuzé, J. Goya-outi et al., LIFEx: a freeware for Radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity, Cancer Res, vol.78, pp.4786-4795, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01938545

F. Orlhac, C. Nioche, M. Soussan, and I. Buvat, Understanding changes in tumor texture indices in PET: a comparison between visual assessment and index values in simulated and patient data, J Nucl Med, vol.58, pp.387-92, 2017.

F. Orlhac, M. Soussan, K. Chouahnia, E. Martinod, and I. Buvat, 18F-FDG PET-derived textural indices reflect tissue-specific uptake pattern in non-small cell lung cancer, PLoS One, vol.10, issue.12, p.145063, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01820353

L. Breiman, Classification and regression trees, 1984.

L. Breiman, Bagging predictors, Mach Learn, vol.24, pp.123-163, 1996.

T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning: data mining, inference, and prediction, 2009.

L. Breiman, Manual on setting up, using, and understanding random forests v4, vol.1, 2002.

A. M. Garcia-vicente, D. Molina, J. Pérez-beteta, M. Amo-salas, A. Martínez-gonzález et al., Textural features and SUV-based variables assessed by dual time point 18F-FDG PET/CT in locally advanced breast cancer, Ann Nucl Med, vol.31, pp.726-761, 2017.

C. Lasnon, M. Majdoub, B. Lavigne, P. Do, M. J. Visvikis et al., 18F-FDG PET/CT heterogeneity quantification through textural features in the era of harmonisation programs: a focus on lung cancer, Eur J Nucl Med Mol Imaging, vol.43, pp.2324-2359, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01386846