L. Rui, Energy metabolism in the liver, Compr Physiol, vol.4, pp.177-197, 2014.

J. E. Gerich, Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications, Diabet Med, vol.27, pp.136-142, 2010.

M. Soty, A. Gautier-stein, F. Rajas, and G. Mithieux, Gut-brain glucose signaling in energy homeostasis, Cell Metab, vol.25, pp.1231-1242, 2017.

K. Sharabi, C. D. Tavares, A. K. Rines, and P. Puigserver, Molecular pathophysiology of hepatic glucose production, Mol Aspects Med, vol.46, pp.21-33, 2015.

P. Karagianni and I. Talianidis, Transcription factor networks regulating hepatic fatty acid metabolism, Biochim Biophys Acta, vol.1851, pp.2-8, 2015.

M. H. Oosterveer and K. Schoonjans, Hepatic glucose sensing and integrative pathways in the liver, Cell Mol Life Sci, vol.71, pp.1453-1467, 2014.

H. V. Lin and D. Accili, Hormonal regulation of hepatic glucose production in health and disease, Cell Metab, vol.14, pp.9-19, 2011.

S. J. Pilkis and D. K. Granner, Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis, Annu Rev Physiol, vol.54, pp.885-909, 1992.

M. R. El-maghrabi, A. J. Lange, L. Kummel, and S. J. Pilkis, The rat fructose-1,6-bisphosphatase gene. Structure and regulation of expression, J Biol Chem, vol.266, pp.2115-2120, 1991.

J. C. Hutton and R. M. O'brien, Glucose-6-phosphatase catalytic subunit gene family, J Biol Chem, vol.284, pp.29241-29245, 2009.

N. Shen, S. Jiang, J. M. Lu, X. Yu, S. S. Lai et al., The constitutive activation of Egr-1/C/EBPa mediates the development of type 2 diabetes mellitus by enhancing hepatic gluconeogenesis, Am J Pathol, vol.185, pp.513-523, 2015.

A. K. Rines, K. Sharabi, C. D. Tavares, and P. Puigserver, Targeting hepatic glucose metabolism in the treatment of type 2 diabetes, Nat Rev Drug Discov, vol.15, pp.786-804, 2016.

C. Mazuy, A. Helleboid, B. Staels, and P. Lefebvre, Nuclear bile acid signaling through the farnesoid X receptor, Cell Mol Life Sci, vol.72, pp.1631-1650, 2015.

J. Prawitt, M. Abdelkarim, J. H. Stroeve, I. Popescu, H. Duez et al., Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity, Diabetes, vol.60, pp.1861-1871, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00605738

M. S. Trabelsi, M. Daoudi, J. Prawitt, S. Ducastel, V. Touche et al., Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells, Nat Commun, vol.6, p.7629, 2015.

D. Duran-sandoval, B. Cariou, F. Percevault, N. Hennuyer, A. Grefhorst et al., The Farnesoid X Receptor Modulates Hepatic Carbohydrate Metabolism during the Fasting-Refeeding Transition, J Biol Chem, vol.280, pp.29971-29979, 2005.

S. Caron, S. C. Huaman, H. Dehondt, M. Ploton, O. Briand et al., Farnesoid X receptor inhibits the transcriptional activity of carbohydrate response element binding protein in human hepatocytes, Mol Cell Biol, vol.33, pp.2202-2211, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00806064

Y. Zhang, F. Y. Lee, G. Barrera, H. Lee, C. Vales et al., Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice, Proc Natl Acad Sci, vol.103, pp.1006-1011, 2006.

S. Cipriani, A. Mencarelli, G. Palladino, and S. Fiorucci, FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats, J Lipid Res, vol.51, pp.771-784, 2010.

K. Ma, P. K. Saha, L. Chan, and D. D. Moore, Farnesoid X receptor is essential for normal glucose homeostasis, J Clin Invest, vol.116, pp.1102-1109, 2006.

L. Jin, X. Feng, H. Rong, Z. Pan, Y. Inaba et al., The antiparasitic drug ivermectin is a novel FXR ligand that regulates metabolism, Nat Commun, vol.4, 1937.

Y. Ma, Y. Huang, L. Yan, M. Gao, and D. Liu, Synthetic FXR agonist GW4064 prevents diet-induced hepatic steatosis and insulin resistance, Pharm Res, vol.30, pp.1447-1457, 2013.

M. J. Park, H. J. Kong, H. Y. Kim, H. H. Kim, J. H. Kim et al., Transcriptional repression of the gluconeogenic gene PEPCK by the orphan nuclear receptor SHP through inhibitory interaction with C/EBPalpha, Biochem J, vol.402, pp.567-574, 2007.

K. Yamagata, H. Daitoku, Y. Shimamoto, H. Matsuzaki, K. Hirota et al., Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1, J Biol Chem, vol.279, pp.23158-23165, 2004.

B. Cariou, E. Bouchaert, M. Abdelkarim, J. Dumont, S. Caron et al., FXR-deficiency confers increased susceptibility to torpor, FEBS Lett, vol.581, pp.5191-5198, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00409558

B. Cariou, K. Van-harmelen, D. Duran-sandoval, T. Van-dijk, A. Grefhorst et al., Transient impairment of the adaptive response to fasting in FXR-deficient mice, FEBS Lett, vol.579, pp.4076-4080, 2005.

B. Cariou, H. K. Van, D. Duran-sandoval, T. H. Van-dijk, A. Grefhorst et al., The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice, J Biol Chem, vol.281, pp.11039-11049, 2006.

B. Renga, A. Mencarelli, D. 'amore, C. Cipriani, S. Baldelli et al., Glucocorticoid receptor mediates the gluconeogenic activity of the farnesoid X receptor in the fasting condition, FASEB J, vol.26, pp.3021-3031, 2012.

G. Porez, B. Gross, J. Prawitt, C. Gheeraert, W. Berrabah et al., The hepatic orosomucoid/alpha1-acid glycoprotein gene cluster is regulated by the nuclear bile acid receptor FXR, Endocrinology, vol.154, pp.3690-3701, 2013.

C. J. Sinai, M. Tohkin, M. Miyata, J. M. Ward, G. Lambert et al., Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis, Cell, vol.102, pp.731-744, 2000.

W. Berrabah, P. Aumercier, C. Gheeraert, H. Dehondt, E. Bouchaert et al., Glucose sensing O-GlcNAcylation pathway regulates the nuclear bile acid receptor farnesoid X receptor (FXR), Hepatology, vol.59, pp.2022-2033, 2014.

F. Lien, A. Berthier, E. Bouchaert, C. Gheeraert, J. Alexandre et al., Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk, J Clin Invest, vol.124, pp.1037-1051, 2014.

R. Gineste, A. Sirvent, R. Paumelle, S. Helleboid, A. Aquilina et al., Phosphorylation of farnesoid X receptor by protein kinase C promotes its transcriptional activity, Mol Endocrinol, vol.22, pp.2433-2447, 2008.

X. J. Fang, S. X. Yu, Y. L. Lu, R. C. Bast, J. R. Woodgett et al., Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A, Proc Natl Acad Sci, vol.97, pp.11960-11965, 2000.

A. M. Thomas, S. N. Hart, B. Kong, J. Fang, X. B. Zhong et al., Genome-wide tissue-specific farnesoid X receptor binding in mouse liver and intestine, Hepatology, vol.51, pp.1410-1419, 2010.

L. J. Everett, L. J. Le, S. Lukovac, D. Bernstein, D. J. Steger et al., Integrative genomic analysis of CREB defines a critical role for transcription factor networks in mediating the fed/fasted switch in liver, BMC Genomics, vol.14, p.337, 2013.

, The Encode Project Consortium. An integrated encyclopedia of DNA elements in the human genome, Nature, vol.489, pp.57-74, 2012.

B. M. Forman, E. Goode, J. Chen, A. E. Oro, D. J. Bradley et al., Identification of a nuclear receptor that is activated by farnesol metabolites, Cell, vol.81, pp.687-693, 1995.

J. J. Howell and M. Stoffel, Nuclear export-independent inhibition of Foxa2 by insulin, J Biol Chem, vol.284, pp.24816-24824, 2009.

C. Wolfrum, D. Besser, E. Luca, and M. Stoffel, Insulin regulates the activity of forkhead transcription factor Hnf-3beta/Foxa-2 by Akt-mediated phosphorylation and nuclear/cytosolic localization, Proc Natl Acad Sci, vol.100, pp.11624-11629, 2003.

I. M. Bochkis, J. Schug, N. E. Rubins, A. R. Chopra, B. W. O'malley et al., Foxa2-dependent hepatic gene regulatory networks depend on physiological state, Physiol Genomics, vol.38, pp.186-195, 2009.

R. E. Soccio, G. Tuteja, L. J. Everett, Z. Li, M. A. Lazar et al., Speciesspecific strategies underlying conserved functions of metabolic transcription factors, Mol Endocrinol, vol.25, pp.694-706, 2011.

T. Sekiya, U. M. Muthurajan, K. Luger, A. V. Tulin, and K. S. Zaret, Nucleosomebinding affinity as a primary determinant of the nuclear mobility of the pioneer transcription factor FoxA, Genes Dev, vol.23, pp.804-809, 2009.

O. Chavez-talavera, A. Tailleux, P. Lefebvre, and B. Staels, Bile Acid Control of Metabolism and Inflammation in Obesity, Type 2 Diabetes, Dyslipidemia, and Nonalcoholic Fatty Liver Disease, Gastroenterology, vol.152, p.1673, 2017.

K. R. Stayrook, K. S. Bramlett, R. S. Savkur, J. Ficorilli, T. Cook et al., Regulation of carbohydrate metabolism by the farnesoid X receptor, Endocrinology, vol.146, pp.984-991, 2005.

M. Watanabe, Y. Horai, S. M. Houten, K. Morimoto, T. Sugizaki et al., Lowering bile acid pool size with a synthetic farnesoid X receptor (FXR) agonist induces obesity and diabetes through reduced energy expenditure, J Biol Chem, vol.286, pp.26913-26920, 2011.

J. K. Kemper, Z. Xiao, B. Ponugoti, J. Miao, S. Fang et al., FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states, Cell Metab, vol.10, pp.392-404, 2009.

J. L. Garcia-rodriguez, L. Barbier-torres, S. Fernandez-alvarez, J. V. Gutierrez-de, M. J. Monte et al., SIRT1 controls liver regeneration by regulating bile acid metabolism through farnesoid X receptor and mammalian target of rapamycin signaling, Hepatology, vol.59, pp.1972-1983, 2014.

J. Wang, D. Mauvoisin, E. Martin, F. Atger, A. N. Galindo et al., Nuclear proteomics uncovers diurnal regulatory landscapes in mouse liver, Cell Metab, vol.25, pp.102-117, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02187195

M. S. Robles, S. J. Humphrey, and M. Mann, Phosphorylation is a central mechanism for circadian control of metabolism and physiology, Cell Metab, vol.25, pp.118-127, 2017.

J. Dubois-chevalier, V. Dubois, H. Dehondt, P. Mazrooei, C. Mazuy et al., The logic of transcriptional regulator recruitment architecture at cis-regulatory modules controlling liver functions

, Genome Res, vol.27, pp.985-996, 2017.

P. Lefebvre, B. Cariou, F. Lien, F. Kuipers, and B. Staels, Role of bile acids and bile acid receptors in metabolic regulation, Physiol Rev, vol.89, pp.147-191, 2009.

Y. Zhang, C. H. Hagedorn, and L. Wang, Role of nuclear receptor SHP in metabolism and cancer, Biochim Biophys Acta, vol.1812, pp.893-908, 2011.

J. Y. Kim, H. J. Kim, K. T. Kim, Y. Y. Park, H. A. Seong et al., Orphan nuclear receptor small heterodimer partner represses hepatocyte nuclear factor 3/Foxa transactivation via inhibition of its DNA binding, Mol Endocrinol, vol.18, pp.2880-2894, 2004.

F. Von-meyenn, T. Porstmann, E. Gasser, N. Selevsek, A. Schmidt et al., Glucagon-induced acetylation of Foxa2 regulates hepatic lipid metabolism, Cell Metab, vol.17, pp.436-447, 2013.

C. Wolfrum, E. Asilmaz, E. Luca, J. M. Friedman, and M. Stoffel, Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes, Nature, vol.432, pp.1027-1032, 2004.