E. L. Kaplan and P. Meier, Nonparametric estimation from incomplete observations, J. Am. Stat. Assoc, vol.53, pp.457-481, 1958.

B. C. Tai, D. Machin, I. White, V. Gebski, and E. , Competing risks analysis of patients with osteosarcoma: a comparison of four different approaches, Stat. Med, vol.20, pp.661-684, 2001.

J. D. Kalbfleisch and R. L. Prentice, The Statistical Analysis of Failure Time Data, 2002.

R. Gelman, R. Gelber, I. C. Henderson, C. N. Coleman, and J. R. Harris, Improved methodology for analyzing local and distant recurrence, J. Clin. Oncol. : Official Journal of the American Society of Clinical Oncology, vol.8, pp.548-555, 1990.

J. P. Klein, J. D. Rizzo, M. J. Zhang, and N. Keiding, Statistical methods for the analysis and presentation of the results of bone marrow transplants. Part I: unadjusted analysis, Bone Marrow Transplantation, vol.28, pp.909-915, 2001.

M. S. Pepe, G. Longton, M. Pettinger, M. Mori, L. D. Fisher et al., Summarizing data on survival, relapse, and chronic graft-versus-host disease after bone marrow transplantation: motivation for and description of new methods, Br. J. Haematol, vol.83, pp.602-607, 1993.

J. M. Satagopan, L. Ben-porat, M. Berwick, M. Robson, D. Kutler et al., A note on competing risks in survival data analysis, BJC (Br. J. Cancer), vol.91, pp.1229-1235, 2004.

G. Bakoyannis and G. Touloumi, Practical methods for competing risks data: a review, Stat. Meth. Med. Res, vol.21, pp.257-272, 2012.

J. J. Dignam and M. N. Kocherginsky, Choice and interpretation of statistical tests used when competing risks are present, J. Clin. Oncol. : Official Journal of the American Society of Clinical Oncology, vol.26, pp.4027-4034, 2008.

J. J. Dignam, Q. Zhang, and M. Kocherginsky, The use and interpretation of competing risks regression models, Clin. Canc. Res. : An Official Journal of the American Association for Cancer Research, vol.18, pp.2301-2308, 2012.

H. T. Kim, Cumulative incidence in competing risks data and competing risks regression analysis, Clin. Canc. Res. : An Official Journal of the American Association for Cancer Research, vol.13, pp.559-565, 2007.

A. Latouche, A. Allignol, J. Beyersmann, M. Labopin, and J. P. Fine, A competing risks analysis should report results on all cause-specific hazards and cumulative incidence functions, J. Clin. Epidemiol, vol.66, pp.648-653, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00794995

D. Machin, On the evolution of statistical methods as applied to clinical trials, J. Intern. Med, vol.255, pp.521-528, 2004.

J. P. Fine, Regression modeling of competing crude failure probabilities, Biostatistics, vol.2, pp.85-97, 2001.

J. P. Klein and P. K. Andersen, Regression modeling of competing risks data based on pseudovalues of the cumulative incidence function, Biometrics, vol.61, pp.223-229, 2005.

D. Kuk and R. Varadhan, Model selection in competing risks regression, Stat. Med, vol.32, pp.3077-3088, 2013.

T. Filleron, A. Laplanche, J. M. Boher, and A. Kramar, An R function to non-parametric and piecewise analysis of competing risks survival data, Comput. Meth. Progr. Biomed, vol.100, pp.24-38, 2010.

B. Gray and . Cmprsk, Subdistribution analysis of competing risks, 2013.

L. Scrucca, A. Santucci, and F. Aversa, Competing risk analysis using R: an easy guide for clinicians, Bone Marrow Transplantation, vol.40, pp.381-387, 2007.

Z. Zhang, Survival analysis in the presence of competing risks, Ann. Transl. Med, vol.5, p.47, 2017.

M. S. Pepe, M. Mori, and . Kaplan-meier, marginal or conditional probability curves in summarizing competing risks failure time data?, Stat. Med, vol.12, pp.737-751, 1993.

J. N. Berman, M. Wang, W. Berry, D. S. Neuberg, and E. C. Guinan, Herpes zoster infection in the post-hematopoietic stem cell transplant pediatric population may be preceded by transaminitis: an institutional experience, Bone Marrow Transplantation, vol.37, pp.73-80, 2006.

M. Crump, D. Tu, L. Shepherd, M. Levine, V. Bramwell et al., Risk of acute leukemia following epirubicin-based adjuvant chemotherapy: a report from the National Cancer Institute of Canada Clinical Trials Group, J. Clin. Oncol. : Official Journal of the American Society of Clinical Oncology, vol.21, pp.3066-3071, 2003.

K. Sigel, K. Crothers, R. Dubrow, K. Krauskopf, J. Jao et al., Prognosis in HIV-infected patients with non-small cell lung cancer, BJC (Br. J. Cancer), vol.109, pp.1974-1980, 2013.

A. Allignol, A. Latouche, J. Yan, and J. P. Fine, A regression model for the conditional probability of a competing event: application to monoclonal gammopathy of unknown significance, J. Roy. Stat. Soc.: Series C (Applied Statistics), vol.60, pp.135-142, 2011.

R. L. Prentice, J. D. Kalbfleisch, A. V. Peterson, N. Flournoy, V. T. Farewell et al., The analysis of failure times in the presence of competing risks, Biometrics, vol.34, pp.541-554, 1978.

R. J. Gray, A class of K-sample tests for comparing the cumulative incidence of a competing risk, Ann. Stat, pp.1141-1154, 1988.

D. Y. Lin, Non-parametric inference for cumulative incidence functions in competing risks studies, Stat. Med, vol.16, pp.901-910, 1997.

J. P. Fine and R. J. Gray, A proportional hazards model for the subdistribution of a competing risk, J. Am. Stat. Assoc, vol.94, pp.496-509, 1999.

B. Zhou, J. Fine, and G. Laird, Goodness-of-fit test for proportional subdistribution hazards model, Stat. Med, vol.32, pp.3804-3811, 2013.

J. Li, T. H. Scheike, and M. J. Zhang, Checking Fine and Gray Subdistribution Hazards Model with Cumulative Sums of Residuals, Lifetime data analysis, 2014.

M. Lunn, Applying k-sample tests to conditional probabilities for competing risks in a clinical trial, Biometrics, vol.54, pp.1662-1672, 1998.

J. Fine, J. Yan, and M. Kosorok, Temporal process regression, Biometrika, vol.91, pp.683-703, 2004.

L. Genre, H. Roche, L. Varela, D. Kanoun, M. Ouali et al., External validation of a published nomogram for prediction of brain metastasis in patients with extra-cerebral metastatic breast cancer and risk regression analysis, Eur. J. Canc, vol.72, pp.200-209, 2017.

A. Allignol and M. A. , Package 'Cprob'. Conditional Probability Function of a, Competing Event R Package Version, vol.1, 2014.

J. H. Jeong and J. Fine, Direct parametric inference for the cumulative incidence function, J. Roy. Stat. Soc.: Series C (Applied Statistics), vol.55, pp.187-200, 2006.

B. Grundmark, H. Garmo, M. Loda, C. Busch, L. Holmberg et al., The metabolic syndrome and the risk of prostate cancer under competing risks of death from other causes, Cancer Epidemiol. Biomark. Prev, vol.19, pp.2088-2096, 2010.

K. Sigel, R. Veluswamy, K. Krauskopf, A. Mehrotra, G. Mhango et al., Lung cancer prognosis in elderly solid organ transplant recipients, Transplantation, vol.99, issue.10, pp.2181-2189, 2015.

P. K. Andersen and N. Keiding, Interpretability and importance of functionals in competing risks and multistate models, Stat. Med, vol.31, pp.1074-1088, 2012.

N. Keiding, Age-specific incidence and prevalence: a statistical perspective, J. Roy. Stat. Soc, pp.371-412, 1991.

T. M. Therneau and T. Lumley, Package 'survival, 2014.

T. A. Gerds and M. T. Gerds, , 2014.

M. Pintilie, Competing Risks: a Practical Perspective, 2006.

B. Zhou, A. Latouche, and M. A. Latouche, Package 'crrSC, 2013.

R. Varadhan, D. Kuk, and M. R. Varadhan, Package 'crrstep, 2014.

E. Coviello, STCOMPET: stata module to generate cumulative incidence in presence of competing events, 2012.

E. Coviello, STPEPEMORI: stata module to test the equality of cumulative incidences across two groups in the presence of competing risks, Statistical Software Components, 2010.

R. G. Gutierrez, Competing-risks Regression in Stata 11, BOS10 Stata Conference, Stata Users Group, 2010.

G. Lin, Y. So, and G. Johnston, Analyzing Survival Data with Competing Risks Using SAS Software, SAS Global Forum, 2012.

M. Kohl, M. Plischke, K. Leffondre, and G. Heinze, PSHREG: a SAS Macro for Proportional and Nonproportional Subdistribution Hazards Regression, Computer Methods and Programs in Biomedicine, 2014.

B. Cabarrou, Computers in Biology and Medicine, vol.101, pp.70-81, 2018.