E. Campo and S. Rule, Mantle cell lymphoma: evolving management strategies, Blood, vol.510, issue.1, pp.48-55, 2015.

P. Jares, D. Colomer, and E. Campo, Molecular pathogenesis of mantle cell lymphoma, J 512 Clin Invest, vol.122, issue.10, pp.3416-3439, 2012.

D. D. Weisenburger and J. O. Armitage, Mantle cell lymphoma--an entity comes of age

, Blood, vol.87, issue.11, pp.4483-94, 1996.

S. H. Swerdlow, E. Campo, S. A. Pileri, N. L. Harris, H. Stein et al., The 2016 516 revision of the World Health Organization classification of lymphoid neoplasms, Blood, vol.127, issue.20, pp.2375-90, 201651719.

X. S. Puente, P. Jares, and E. Campo, Chronic lymphocytic leukemia and mantle cell 519 lymphoma: crossroads of genetic and microenvironment interactions, Blood, vol.131, issue.21, pp.2283-96, 2018.

D. Klapper, W. Berger, F. Jardin, F. Briere, J. Salles et al., High-dose 522 cytarabine does not overcome the adverse prognostic value of CDKN2A and TP53 deletions 523 in mantle cell lymphoma, Blood, vol.126, issue.5, pp.604-615, 2015.

S. Beà, R. Valdés-mas, A. Navarro, I. Salaverria, D. Martín-garcia et al.,

, Landscape of somatic mutations and clonal evolution in mantle cell lymphoma, Proc Natl, vol.526

A. Sci and U. , , vol.110, pp.18250-18255, 2013.

A. C. Queirós, R. Beekman, R. Vilarrasa-blasi, M. Duran-ferrer, G. Clot et al.,

, Decoding the DNA Methylome of Mantle Cell Lymphoma in the Light of the Entire B, Cell, vol.529

. Lineage, Cancer Cell, vol.30, pp.806-827, 2016.

J. A. Burger and J. G. Gribben, The microenvironment in chronic lymphocytic leukemia 531 (CLL) and other B cell malignancies: insight into disease biology and new targeted therapies

, Semin Cancer Biol, vol.24, pp.71-81, 2014.

P. Amé-thomas and K. Tarte, The yin and the yang of follicular lymphoma cell niches: 534 role of microenvironment heterogeneity and plasticity, Semin Cancer Biol, vol.24, p.23, 2014.

A. Papin, L. Gouill, S. Chiron, and D. , Rationale for targeting tumor cells in their 537 microenvironment for mantle cell lymphoma treatment. Leuk Lymphoma, vol.538, p.12, 2017.

D. Chiron, C. Bellanger, A. Papin, B. Tessoulin, C. Dousset et al., Rational 539 targeted therapies to overcome microenvironment-dependent expansion of mantle cell 540 lymphoma, Blood, vol.15, issue.24, pp.2808-2826, 2016.

N. S. Saba, D. Liu, S. Herman, C. Underbayev, X. Tian et al., Pathogenic 542 role of B-cell receptor signaling and canonical NF-?B activation in mantle cell lymphoma

, Blood, vol.128, issue.1, pp.82-92, 201607.

Z. Chen, A. E. Teo, and N. Mccarty, ROS-Induced CXCR4 Signaling Regulates Mantle Cell 545

. Lymphoma, MCL) Cell Survival and Drug Resistance in the Bone Marrow 546 Microenvironment via Autophagy, Clin Cancer Res, vol.22, issue.1, pp.187-99, 2016.

D. Chiron, C. Dousset, C. Brosseau, C. Touzeau, S. Maïga et al., Biological 548 rational for sequential targeting of Bruton tyrosine kinase and Bcl-2 to overcome CD40-549 induced ABT-199 resistance in mantle cell lymphoma, Oncotarget, vol.6, issue.11, p.8750, 2015.

A. V. Kurtova, A. T. Tamayo, R. J. Ford, J. A. Burger, R. Noy et al., Mantle cell lymphoma cells express 552 high levels of CXCR4, CXCR5, and VLA-4 (CD49d): importance for interactions with the 553 stromal microenvironment and specific targeting, Blood, vol.113, issue.19, pp.4604-4617, 2009.

, Immunity, vol.41, issue.1, pp.49-61, 2014.

B. Qian and J. W. Pollard, Macrophage diversity enhances tumor progression and

C. Steidl, T. Lee, S. P. Shah, P. Farinha, G. Han et al., Tumor-associated 559 macrophages and survival in classic Hodgkin's lymphoma, N Engl J Med, vol.362, issue.10, pp.875-85, 2010.

R. Amin, F. Mourcin, F. Uhel, C. Pangault, P. Ruminy et al., DC-SIGN-562 expressing macrophages trigger activation of mannosylated IgM B-cell receptor in follicular 563 lymphoma, Blood, vol.126, issue.16, pp.1911-1931, 2015.

P. Nguyen, O. Fedorchenko, N. Rosen, M. Koch, R. Barthel et al.,

, Kinase in the Tumor Microenvironment Is Essential for the Progression of Chronic 566

, Lymphocytic Leukemia. Cancer Cell, vol.10, issue.4, pp.610-632, 2016.

G. Galletti, C. Scielzo, F. Barbaglio, T. V. Rodriguez, M. Riba et al.,

, Targeting Macrophages Sensitizes Chronic Lymphocytic Leukemia to Apoptosis and Inhibits 569

, Disease Progression. Cell Rep, vol.14, pp.1748-60, 2016.

K. Song, B. H. Herzog, M. Sheng, J. Fu, J. M. Mcdaniel et al., Lenalidomide 571 inhibits lymphangiogenesis in preclinical models of mantle cell lymphoma, Cancer Res, vol.73, issue.24, pp.7254-64, 2013572-12-15.

L. V. Pham, M. T. Vang, A. T. Tamayo, G. Lu, P. Challagundla et al.,

, Involvement of tumor-associated macrophage activation in vitro during development of a 575 novel mantle cell lymphoma cell line, PF-1, derived from a typical patient with relapsed 576 disease, Leuk Lymphoma, vol.56, issue.1, pp.186-93, 2015.

M. Hanf, D. Chiron, S. De-visme, C. Touzeau, H. Maisonneuve et al., The 578 REFRACT-LYMA cohort study: a French observational prospective cohort study of patients 579 with mantle cell lymphoma. BMC Cancer, vol.16, 2016.

E. Derlindati, D. Cas, A. Montanini, B. Spigoni, V. Curella et al.,

, Transcriptomic analysis of human polarized macrophages: more than one role of alternative 583 activation?, PLoS ONE, vol.10, issue.3, p.119751, 2015.

P. J. Murray, J. E. Allen, S. K. Biswas, E. A. Fisher, D. W. Gilroy et al., Macrophage 585 activation and polarization: nomenclature and experimental guidelines, Immunity, vol.41, issue.1, pp.14-20, 2014.

S. Maïga, C. Brosseau, G. Descamps, C. Dousset, P. Gomez-bougie et al., A 588 simple flow cytometry-based barcode for routine authentication of multiple myeloma and 589 mantle cell lymphoma cell lines, Cytometry A, vol.87, issue.4, pp.285-293, 2015.

M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law et al., limma powers 591 differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids, p.592

. Res, , vol.43, p.47, 2015.

L. Gautier, L. Cope, B. M. Bolstad, R. A. Irizarry, A. M. Newman et al., Robust 596 enumeration of cell subsets from tissue expression profiles, Bioinformatics, vol.20, issue.3, pp.453-460, 2004.

D. Vishwamitra, P. Shi, D. Wilson, R. Manshouri, F. Vega et al., Expression 599 and effects of inhibition of type I insulin-like growth factor receptor tyrosine kinase in mantle 600 cell lymphoma, Haematologica, vol.96, issue.6, pp.871-80, 2011.

F. Baran-marszak, M. Boukhiar, S. Harel, C. Laguillier, C. Roger et al.,

, Constitutive and B-cell receptor-induced activation of STAT3 are important signaling 603 pathways targeted by bortezomib in leukemic mantle cell lymphoma, Haematologica, vol.95, issue.11, pp.1865-72, 2010604-11.

L. Zhang, J. Yang, J. Qian, H. Li, J. E. Romaguera et al., Role of the 606 microenvironment in mantle cell lymphoma: IL-6 is an important survival factor for the tumor

A. Shapouri-moghaddam, S. Mohammadian, H. Vazini, M. Taghadosi, and S. Esmaeili, , vol.609

F. Mardani, Macrophage plasticity, polarization, and function in health and disease, J 610 Cell Physiol, vol.233, issue.9, pp.6425-6465, 2018.

A. Mantovani, F. Marchesi, A. Malesci, L. Laghi, and P. Allavena, Tumour-associated 612 macrophages as treatment targets in oncology, Nat Rev Clin Oncol, vol.14, issue.7, p.37, 2017.

Y. Yeh, S. Hsu, P. Lin, K. Hsu, P. Wu et al., , p.1085

, Genetic Variant of CSF1R Gene Regulates Tumor Immunity by Altering the Proliferation, p.615

, Polarization, and Function of Macrophages, Clin Cancer Res, vol.23, pp.6021-6051, 1920.

D. K. Edwards, K. Watanabe-smith, A. Rofelty, A. Damnernsawad, T. Laderas et al., , p.617

, CSF1R inhibitors exhibit anti-tumor activity in acute myeloid leukemia by blocking 618 paracrine signals from support cells, Blood, 2018.

S. Bernard, D. Danglade, L. Gardano, C. Laguillier, G. Lazarian et al.,

, Inhibitors of BCR signalling interrupt the survival signal mediated by the micro-environment 621 in mantle cell lymphoma, Int J Cancer, vol.136, issue.12, pp.2761-74, 2015.

B. Y. Chang, M. Francesco, D. Rooij, M. Magadala, P. Steggerda et al.,

, Egress of CD19(+)CD5(+) cells into peripheral blood following treatment with the Bruton 624 tyrosine kinase inhibitor ibrutinib in mantle cell lymphoma patients, Blood, vol.122, issue.14, pp.2412-2436, 2013.

R. Rahal, M. Frick, R. Romero, J. M. Korn, R. Kridel et al., Pharmacological 627 and genomic profiling identifies NF-?B-targeted treatment strategies for mantle cell 628 lymphoma, Nat Med, vol.20, issue.1, pp.87-92, 2014.

X. Zhao, T. Lwin, A. Silva, B. Shah, J. Tao et al., Unification of de novo and 630 acquired ibrutinib resistance in mantle cell lymphoma, Nat Commun, vol.8, p.43, 2017.

B. Ruffell, N. I. Affara, and L. M. Coussens, Differential macrophage programming in the 632 tumor microenvironment, Trends Immunol, vol.33, issue.3, pp.119-145, 2012.

J. A. Hamilton, A. D. Cook, and P. P. Tak, Anti-colony-stimulating factor therapies for 634 inflammatory and autoimmune diseases, Nat Rev Drug Discov, vol.16, issue.1, p.45, 201629.

C. H. Ries, M. A. Cannarile, S. Hoves, J. Benz, K. Wartha et al., Targeting tumor-636 associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy

, Cancer Cell, vol.25, issue.6, pp.846-59, 2014.

X. Zhu, J. Zhang, P. Zhuang, H. Zhu, W. Zhang et al., High 639 expression of macrophage colony-stimulating factor in peritumoral liver tissue is associated 640 with poor survival after curative resection of hepatocellular carcinoma, J Clin Oncol, vol.26, issue.16, pp.2707-2723, 2008641-06-01.

A. Polk, Y. Lu, T. Wang, E. Seymour, N. G. Bailey et al., Colony-Stimulating, vol.643

, Factor-1 Receptor Is Required for Nurse-like Cell Survival in Chronic Lymphocytic 644

, Leukemia. Clin Cancer Res, vol.22, issue.24, pp.6118-6146, 2016.

S. M. Pyonteck, L. Akkari, A. J. Schuhmacher, R. L. Bowman, L. Sevenich et al.,

, CSF-1R inhibition alters macrophage polarization and blocks glioma progression, Nat Med, vol.647, issue.10, pp.1264-72, 2013.

A. Gutiérrez-gonzález, M. Martínez-moreno, R. Samaniego, and N. Arellano-sánchez, , p.649

L. Salinas-muñoz and M. Relloso, Evaluation of the potential therapeutic benefits of 650 macrophage reprogramming in multiple myeloma, Blood, vol.128, issue.18, pp.2241-52, 201603.

D. L. Moughon, H. He, S. Schokrpur, Z. K. Jiang, M. Yaqoob et al.,

, Blockade Using CSF1R Inhibitors Reverses the Vascular Leakage Underlying Malignant 653

S. J. Priceman, J. L. Sung, Z. Shaposhnik, J. B. Burton, A. X. Torres-collado et al., Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: 656 combating tumor evasion of antiangiogenic therapy, Cancer Res, vol.75, issue.22, pp.1461-71, 2010.

J. G. Chen, X. Liu, M. Munshi, L. Xu, N. Tsakmaklis et al., BTKCys481Ser 658 drives ibrutinib resistance via ERK1/2 and protects BTKwild-type MYD88-mutated cells by a 659 paracrine mechanism, Blood, vol.131, issue.18, pp.2047-59, 2018.

D. Chiron, D. Liberto, M. Martin, P. Huang, X. Sharman et al., Cell-cycle 661 reprogramming for PI3K inhibition overrides a relapse-specific C481S BTK mutation 662 revealed by longitudinal functional genomics in mantle cell lymphoma, Cancer Discov, vol.4, issue.9, pp.1022-1057, 2014663-09.

P. Martin, K. Maddocks, J. P. Leonard, J. Ruan, A. Goy et al.,

, Postibrutinib outcomes in patients with mantle cell lymphoma, Blood, vol.127, issue.12, pp.1559-63, 2016.

-. Annexin, Wilcoxon 695 matched pairs sign rank test. *** p < .001. Red lines represent medians. (B) Cell cycle 696 analysis (BrdU/PI) of PB MCL cells (n = 16) after 7 days of co-cultures with monocytes 697 according to their molecular subtypes

, C) Percentage 699 of live cells (AnnexinV staining, n = 4, left panel) and cell cycle analysis (BrdU/PI, n = 5, right 700 panel) of PB MCL cells cultured alone or in contact with autologous or allogeneic monocytes 701 for 7 days

, Figure 2. MCL cells polarize monocytes into specific M?MCL with M2-like features, p.704

, An ascendant hierarchical clustering was constructed with ward.D2 method of Euclidian 705 distance. M2 were generated from human monocytes cultured with CSF1/IL-10 (see 706 methods, M2' with CSF1 alone (GSE20484) and M1 with LPS/IFNg (GSE95405) (B), p.707

, Radarchart representation of the cibersort signature for M?MCL and MCL-infiltrated 708

, macrophages in lymph nodes. (C, left panel) CD163 Mean Fluorescence Intensity ratio 709 assessed by flow cytometry for M1 (n = 6), M2 (n = 6) and M?MCL (n = 9

, right panel) IGF1, IL10 and IL6 induction 711 measured by qRT-PCR (relative to undifferentiated human monocytes) for M1 (n = 3), M2 (n 712 = 3) and M?MCL (n = 5) macrophages. t-test

, Figure 3. MCL cells express the M2-polarising factors CSF1 and IL-10. (A) Expression of 715 CSF1 and IL10 in MCL cells

, GEP public databases (see Methods). Mann-Whitney test. n.s, not significant, p.717

, B) qRT-PCR analysis of CSF1 and IL10 gene expression in 9 MCL cell 718 lines (realized in triplicate) and (C) twenty CD19 + MCL samples purified from PB. Expression 719 was normalized to Granta cell line. (D) Concentration of CSF1 and IL-10 proteins evaluated 720 by ELISA in the supernatant of M?MCL/MCL co-culture (7 days, n = 10). (E) Percentage of 721 lived CD14 cells, p.722

, 001 (F) Percentage 725 of primary MCL live cells in coculture with monocytes with or without GW2580 treatment 726 (1µM) (n = 8). Cell death was assessed by Annexin-V staining. Wilcoxon matched pairs sign 727 rank test, anti-IL-10R antibodies (5µg/mL). Paired t-test *p < .05 **p < .01 ***p <

, Ibrutinib counteracts MCL/M?MCL dialogue through inhibition of CSF1, p.730

, Gene 732 expression has been normalized to the non-treated control condition of each cell line 733 (realized in triplicate) (B) Concentration of CSF1 and IL-10 proteins evaluated by ELISA in 734 the supernatant of Mino and Granta cells with or without ibrutinib treatment

, Gating strategy to evaluate the CD163 expression on CD14 + 736 after 3 days of co-culture between monocytes and Mino or Granta cells with or without 737 ibrutinib treatment (72h; 0.5µM) (lower panel) CD163 MFI modulation on CD14+ cells 738 representing 3 independent experiments. (D) Percentage of primary MCL live cells in 739 coculture with monocytes (Annexin-V staining) with or without ibrutinib treatment

, Wilcoxon matched pairs sign rank test. *** p < .01. (E) Cell cycle analysis 741 (BrdU/PI) of primary MCL cells after 5 days of co-cultures with monocytes with or without 742 ibrutinib treatment

, A) Plasma concentration of CSF1 and IL-10 proteins in MCL 746 patients (n = 28) and age-matched healthy donors, Figure 5. CD163 modulation on circulating monocytes in vivo might be an early marker 745 of ibrutinib response, p.747

, Mean fluorescence intensity ratio (MFIr) of CD163 on circulating monocytes (CD14 + cells

, MCL patients (n = 32) compare to age-matched HD (n = 8). Mann-Whitney test, p.749

, B) Plasma concentration of CSF1 and IL-10 and CD163 MFIr modulation 750 on monocytes (CD14 + ) of patient treated with anti-CD20 and ibrutinib (Clinical trial: 751 NTC02558816)

, Figure 6. CSF1R as a potential therapeutic target for ibrutinib resistant patients, p.756

. Ibrutinib-sensitive, 16) and ibrutinib-resistant (Pt#2, 5, 18, 19) primary MCL 757 cells were cocultured with monocytes and treated with ibrutinib, vol.15, p.758, 2011.

, B) Ibrutinib-sensitive (Pt#7, 11, 15) and ibrutinib-resistant, vol.12

, MCL cells were cocultured with monocytes and treated with low doses of ibrutinib (125 nM) 760 or GW2580 (125 nM) or both for 72h. Cell death was assessed by assessed by Annexin-V 761 staining