, Proteomics experiment": the same supernatants used for the Proteomics analysis (see Figure 6) were analyzed by enzyme-linked immunosorbent assay (ELISA) for C3 (a) and factor B (B) content. Results are expressed as mean ± SEM, and analyzed with one-way ANOVA, followed by Tukey's post-analysis. (c) Independently of (a,B), MPI cells (n = 3) were either left uninfected (CTRL) or infected (see legend of Figure 4) during 4 h with either WT- + p0-or ?LasB- + p0-PAO1 (moi = 1), in the presence or not of phosphoramidon (PA) (10 µM). Supernatants were then harvested and analyzed by ELISA for C3 content, FigUre 9 | Measurement of C3 and factor B levels in MPI supernatants following WT-or ?LasBp0-PAO1 infection

A. Edelman and J. M. Sallenave, Cystic fibrosis, a multi-systemic mucosal disease: 25 years after the discovery of CFTR, Int J Biochem Cell Biol, vol.52, 2014.

J. M. Sallenave, Phagocytic and signaling innate immune receptors: are they dysregulated in cystic fibrosis in the fight against Pseudomonas aeruginosa?, Int J Biochem Cell Biol, vol.52, pp.103-110, 2014.

S. Bleves, V. Viarre, R. Salacha, G. P. Michel, A. Filloux et al., Protein secretion systems in Pseudomonas aeruginosa: a wealth of pathogenic weapons, Int J Med Microbiol, vol.300, pp.534-577, 2010.

J. Jyot, V. Balloy, G. Jouvion, A. Verma, L. Touqui et al., Type II secretion system of Pseudomonas aeruginosa: in vivo evidence of a significant role in death due to lung infection, J Infect Dis, vol.203, pp.1369-77, 2011.

V. Saint-criq, B. Villeret, F. Bastaert, S. Kheir, A. Hatton et al., Pseudomonas aeruginosa LasB protease impairs innate immunity in mice and humans by targeting a lung epithelial cystic fibrosis transmembrane regulator-IL-6-antimicrobial-repair pathway, Thorax, vol.73, pp.49-61, 2018.

D. G. Storey, E. E. Ujack, and H. R. Rabin, Population transcript accumulation of Pseudomonas aeruginosa exotoxin A and elastase in sputa from patients with cystic fibrosis, Infect Immun, vol.60, pp.4687-94, 1992.

D. G. Storey, E. E. Ujack, I. Mitchell, and H. R. Rabin, Positive correlation of algD transcription to lasB and lasA transcription by populations of Pseudomonas aeruginosa in the lungs of patients with cystic fibrosis, Infect Immun, vol.65, pp.4061-4068, 1997.

P. Tingpej, L. Smith, B. Rose, H. Zhu, T. Conibear et al., Phenotypic characterization of clonal and nonclonal Pseudomonas aeruginosa strains isolated from lungs of adults with cystic fibrosis, J Clin Microbiol, vol.45, pp.1697-704, 2007.

F. Faraji, M. Mahzounieh, A. Ebrahimi, F. Fallah, O. Teymournejad et al., Molecular detection of virulence genes in Pseudomonas aeruginosa isolated from children with cystic fibrosis and burn wounds, Microb Pathog, vol.99, pp.1-4, 2016.

T. F. Murphy, A. L. Brauer, K. Eschberger, P. Lobbins, L. Grove et al., Pseudomonas aeruginosa in chronic obstructive pulmonary disease, Am J Respir Crit Care Med, vol.177, pp.853-60, 2008.

Y. Tamura, S. Suzuki, M. Kijima, T. Takahashi, and M. Nakamura, Effect of proteolytic enzyme on experimental infection of mice with Pseudomonas aeruginosa, J Vet Med Sci, vol.54, pp.597-606, 1992.

, Frontiers in Immunology | www.frontiersin.org, vol.9, p.1675, 2018.

L. E. Elsheikh, T. Kronevi, B. Wretlind, S. Abaas, and B. H. Iglewski, Assessment of elastase as a Pseudomonas aeruginosa virulence factor in experimental lung infection in mink, Vet Microbiol, vol.13, pp.281-290, 1987.

B. Wretlind and O. R. Pavlovskis, Pseudomonas aeruginosa elastase and its role in Pseudomonas infections, Rev Infect Dis, vol.5, issue.5, pp.998-1004, 1983.

Y. Komori, T. Nonogaki, and T. Nikai, Hemorrhagic activity and muscle damaging effect of Pseudomonas aeruginosa metalloproteinase (elastase), Toxicon, vol.39, pp.1327-1359, 2001.

Y. Kon, H. Tsukada, T. Hasegawa, K. Igarashi, K. Wada et al., The role of Pseudomonas aeruginosa elastase as a potent inflammatory factor in a rat air pouch inflammation model, FEMS Immunol Med Microbiol, vol.25, pp.313-334, 1999.

A. O. Azghani, E. J. Miller, and B. T. Peterson, Virulence factors from Pseudomonas aeruginosa increase lung epithelial permeability, Lung, vol.178, pp.261-270, 2000.

Z. Kuang, Y. Hao, B. E. Walling, J. L. Jeffries, D. E. Ohman et al., Pseudomonas aeruginosa elastase provides an escape from phagocytosis by degrading the pulmonary surfactant protein-A, PLoS One, vol.6, 2011.

D. Descamps, L. Gars, M. Balloy, V. Barbier, D. Maschalidi et al., Toll-like receptor 5 (TLR5), IL-1? secretion, and asparagine endopeptidase are critical factors for alveolar macrophage phagocytosis and bacterial killing, Proc Natl Acad Sci U S A, vol.109, pp.1619-1643, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00667246

A. De-groot, A. Filloux, and J. Tommassen, Conservation of xcp genes involved in the two-step secretion process in different Pseudomonas species and other Gram-negative bacteria, Mol Gen Genet, vol.229, pp.278-84, 1991.

G. Fejer, M. D. Wegner, I. Györy, I. Cohen, P. Engelhard et al., GM-CSF-dependent macrophage lines are a unique model to study tissue macrophage functions, Proc Natl Acad Sci U S A, vol.110, pp.2191-2199, 2013.

A. J. Simpson, W. A. Wallace, M. E. Marsden, J. R. Govan, D. J. Porteous et al., Adenoviral augmentation of elafin protects the lung against acute injury mediated by activated neutrophils and bacterial infection, J Immunol, vol.167, pp.1778-86, 2001.

F. Casilag, A. Lorenz, J. Krueger, F. Klawonn, S. Weiss et al., The LasB elastase of Pseudomonas aeruginosa acts in concert with alkaline protease AprA to prevent flagellin-mediated immune recognition, Infect Immun, vol.84, pp.162-71, 2015.

T. Kerber-momot, D. Leemhuis, A. Lührmann, A. Munder, B. Tümmler et al., Beneficial effects of TLR-2/6 ligation in pulmonary bacterial infection and immunization with Pseudomonas aeruginosa, Inflammation, vol.33, pp.58-64, 2010.

E. Raoust, V. Balloy, I. Garcia-verdugo, L. Touqui, R. Ramphal et al., Pseudomonas aeruginosa LPS or flagellin are sufficient to activate TLRdependent signaling in murine alveolar macrophages and airway epithelial cells, PLoS One, vol.4, p.7259, 2009.

P. Xaplanteri, G. Lagoumintzis, G. Dimitracopoulos, and F. Paliogianni, Synergistic regulation of Pseudomonas aeruginosa-induced cytokine production in human monocytes by mannose receptor and TLR2, Eur J Immunol, vol.39, pp.730-770, 2009.

S. J. Skerrett, C. B. Wilson, H. D. Liggitt, and A. M. Hajjar, Redundant toll-like receptor signaling in the pulmonary host response to Pseudomonas aeruginosa, Am J Physiol Lung Cell Mol Physiol, vol.292, pp.312-334, 2006.

Z. Zhang, J. P. Louboutin, D. J. Weiner, J. B. Goldberg, and J. M. Wilson, Human airway epithelial cells sense Pseudomonas aeruginosa infection via recognition of flagellin by toll-like receptor 5, Infect Immun, vol.73, pp.7151-60, 2005.
DOI : 10.1128/iai.73.11.7151-7160.2005

URL : https://iai.asm.org/content/73/11/7151.full.pdf

R. Adamo, S. Sokol, G. Soong, M. I. Gomez, and A. Prince, Pseudomonas aeruginosa flagella activate airway epithelial cells through asialoGM1 and toll-like receptor 2 as well as toll-like receptor 5, Am J Respir Cell Mol Biol, vol.30, pp.627-661, 2004.
DOI : 10.1165/rcmb.2003-0260oc

A. Ozinsky, D. M. Underhill, J. D. Fontenot, A. M. Hajjar, K. D. Smith et al., The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors, Proc Natl Acad Sci U S A, vol.97, pp.13766-71, 2000.

B. N. Gantner, R. M. Simmons, S. J. Canavera, S. Akira, and D. M. Underhill, Collaborative induction of inflammatory responses by dectin-1 and toll-like receptor 2, J Exp Med, vol.197, pp.1107-1124, 2003.
DOI : 10.1084/jem.20021787

URL : http://jem.rupress.org/content/197/9/1107.full.pdf

B. A. Cowell, S. S. Twining, J. A. Hobden, M. S. Kwong, and S. M. Fleiszig, Mutation of lasA and lasB reduces Pseudomonas aeruginosa invasion of epithelial cells, Microbiology, vol.149, pp.2291-2300, 2003.

W. I. Mariencheck, J. F. Alcorn, S. M. Palmer, and J. R. Wright, Pseudomonas aeruginosa elastase degrades surfactant proteins A and D, Am J Respir Cell Mol Biol, vol.28, pp.528-565, 2003.
DOI : 10.1165/rcmb.2002-0141oc

A. L. Beatty, J. L. Malloy, and J. R. Wright, Pseudomonas aeruginosa degrades pulmonary surfactant and increases conversion in vitro, Am J Respir Cell Mol Biol, vol.32, pp.128-162, 2005.

K. Morihara, H. Tsuzuki, M. Harada, and T. Iwata, Purification of human plasma alpha 1-proteinase inhibitor and its inactivation by Pseudomonas aeruginosa elastase, J Biochem, vol.95, pp.795-804, 1984.

R. T. Horvat, M. Clabaugh, C. Duval-jobe, and M. J. Parmely, Inactivation of human gamma interferon by Pseudomonas aeruginosa proteases: elastase augments the effects of alkaline protease despite the presence of alpha 2-macroglobulin, Infect Immun, vol.57, pp.1668-74, 1989.

M. Parmely, A. Gale, M. Clabaugh, R. Horvat, and W. W. Zhou, Proteolytic inactivation of cytokines by Pseudomonas aeruginosa, Infect Immun, vol.58, pp.3009-3023, 1990.

Y. Q. Hong and B. Ghebrehiwet, Effect of Pseudomonas aeruginosa elastase and alkaline protease on serum complement and isolated components C1q and C3, Clin Immunol Immunopathol, vol.62, pp.133-141, 1992.

A. O. Azghani, Pseudomonas aeruginosa and epithelial permeability: role of virulence factors elastase and exotoxin A, Am J Respir Cell Mol Biol, vol.15, pp.132-172, 1996.
DOI : 10.1165/ajrcmb.15.1.8679217

A. Schmidtchen, I. M. Frick, E. Andersson, H. Tapper, and L. Björck, Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37, Mol Microbiol, vol.46, pp.157-68, 2002.

G. L. Kevin, K. L. Munson, M. C. Johnson, and G. M. Denning, Metalloproteases from Pseudomonas aeruginosa degrade human RANTES, MCP-1, and ENA-78

, J Interferon Cytokine Res, vol.23, pp.307-325, 2003.

J. F. Alcorn and J. R. Wright, Degradation of pulmonary surfactant protein D by Pseudomonas aeruginosa elastase abrogates innate immune function, J Biol Chem, vol.279, pp.30871-30880, 2004.

K. Matsumoto, Role of bacterial proteases in pseudomonal and serratial keratitis, Biol Chem, vol.385, pp.1007-1023, 2004.

D. Leduc, N. Beaufort, S. De-bentzmann, J. C. Rousselle, A. Namane et al., The Pseudomonas aeruginosa LasB metalloproteinase regulates the human urokinase-type plasminogen activator receptor through domain-specific endoproteolysis, Infect Immun, vol.75, pp.3848-58, 2007.

J. Potempa and R. N. Pike, Corruption of innate immunity by bacterial proteases, J Innate Immun, vol.1, pp.70-87, 2009.

S. M. Mccarty, C. A. Cochrane, P. D. Clegg, and S. L. Percival, The role of endogenous and exogenous enzymes in chronic wounds: a focus on the implications of aberrant levels of both host and bacterial proteases in wound healing, Wound Repair Regen, vol.20, pp.125-161, 2012.

S. L. Lafayette, D. Houle, T. Beaudoin, G. Wojewodka, D. Radzioch et al., Cystic fibrosis-adapted Pseudomonas aeruginosa quorum sensing lasR mutants cause hyperinflammatory responses, Sci Adv, vol.1, issue.6, p.1500199, 2015.

M. Ruffin, C. Bilodeau, É. Maillé, S. L. Lafayette, G. A. Mckay et al., Quorum-sensing inhibition abrogates the deleterious impact of Pseudomonas aeruginosa on airway epithelial repair, FASEB J, vol.30, pp.3011-3036, 2016.

É. Maillé, M. Ruffin, D. Adam, H. Messaoud, S. L. Lafayette et al., Quorum sensing down-regulation counteracts the negative impact of Pseudomonas aeruginosa on CFTR channel expression, function and rescue in human airway epithelial cells, Front Cell Infect Microbiol, vol.7, p.470, 2017.

B. Weber, M. M. Nickol, K. S. Jagger, and C. B. Saelinger, Interaction of Pseudomonas exoproducts with phagocytic cells, Can J Microbiol, vol.28, pp.679-85, 1982.

A. Kharazmi and H. Nielsen, Inhibition of human monocyte chemotaxis and chemiluminescence by Pseudomonas aeruginosa elastase, tb05124.x Frontiers in Immunology | www.frontiersin.org, vol.99, p.1675, 1991.

A. Kharazmi, H. O. Eriksen, G. Döring, W. Goldstein, and N. Høiby, Effect of Pseudomonas aeruginosa proteases on human leukocyte phagocytosis and bactericidal activity, Acta Pathol Microbiol Immunol Scand C, vol.94, pp.175-184, 1986.

B. W. Bardoel, S. Van-der-ent, M. J. Pel, J. Tommassen, C. M. Pieterse et al., Pseudomonas evades immune recognition of flagellin in both mammals and plants, PLoS Pathog, vol.7, 2011.

A. J. Laarman, B. W. Bardoel, M. Ruyken, J. Fernie, F. J. Milder et al., Pseudomonas aeruginosa alkaline protease blocks complement activation via the classical and lectin pathways, J Immunol, vol.188, pp.386-93, 2012.

S. L. Mueller-ortiz, S. M. Drouin, and R. A. Wetsel, The alternative activation pathway and complement component C3 are critical for a protective immune response against Pseudomonas aeruginosa in a murine model of pneumonia, Infect Immun, vol.72, pp.2899-906, 2004.

J. G. Younger, S. Shankar-sinha, M. Mickiewicz, A. S. Brinkman, G. A. Valencia et al., Murine complement interactions with Pseudomonas aeruginosa and their consequences during pneumonia, Am J Respir Cell Mol Biol, vol.29, pp.432-440, 2003.

R. P. Cleveland, L. D. Hazlett, M. A. Leon, and R. S. Berk, Role of complement in murine corneal infection caused by Pseudomonas aeruginosa, Invest Ophthalmol Vis Sci, vol.24, pp.237-279, 1983.

R. A. Ezekowitz, R. B. Sim, M. Hill, and S. Gordon, Local opsonization by secreted macrophage complement components. Role of receptors for complement in uptake of zymosan, J Exp Med, vol.159, pp.244-60, 1984.

R. A. Ezekowitz, R. B. Sim, G. G. Macpherson, and S. Gordon, Interaction of human monocytes, macrophages, and polymorphonuclear leukocytes with zymosan in vitro. Role of type 3 complement receptors and macrophage-derived complement, J Clin Invest, vol.76, pp.2368-76, 1985.

A. R. Kerr, G. K. Paterson, A. Riboldi-tunnicliffe, and T. J. Mitchell, Innate immune defense against pneumococcal pneumonia requires pulmonary complement component C3, Infect Immun, vol.73, pp.4245-52, 2005.

F. Gutiérrez, M. Masiá, J. C. Rodríguez, C. Mirete, B. Soldán et al., Community-acquired pneumonia of mixed etiology: prevalence, clinical characteristics, and outcome, Eur J Clin Microbiol Infect Dis, vol.24, pp.377-83, 2005.

T. Shida, H. Tachibana, A. Ito, S. Ikeda, K. Furuta et al., Clinical characteristics of pneumonia in bedridden patients receiving home care: a 3-year prospective observational study, J Infect Chemother, vol.21, pp.587-91, 2015.

L. Millares, R. Ferrari, M. Gallego, M. Garcia-nuñez, V. Pérez-brocal et al., Bronchial microbiome of severe COPD patients colonised by Pseudomonas aeruginosa, Eur J Clin Microbiol Infect Dis, vol.33, pp.1101-1112, 2014.

E. M. Bruscia and T. L. Bonfield, Cystic fibrosis lung immunity: the role of the macrophage, J Innate Immun, vol.8, pp.550-63, 2016.

M. Lévêque, L. Trionnaire, S. , D. Porto, P. Martin-chouly et al., The impact of impaired macrophage functions in cystic fibrosis disease progression, J Cyst Fibros, vol.16, pp.443-53, 2017.