H. Puy, L. Gouya, and J. Deybach, Porphyrias. Lancet, vol.375, pp.924-937, 2010.

M. Balwani and R. J. Desnick, The porphyrias: Advances in diagnosis and treatment, Blood, vol.120, pp.4496-4504, 2012.

C. Landefeld, X-linked protoporphyria: Iron supplementation improves protoporphyrin overload, liver damage and anaemia, Br J Haematol, vol.173, pp.482-484, 2016.

S. D. Whatley, Gene dosage analysis identifies large deletions of the FECH gene in 10% of families with erythropoietic protoporphyria, J Invest Dermatol, vol.127, pp.2790-2794, 2007.

S. D. Whatley, C-terminal deletions in the ALAS2 gene lead to gain of function and cause X-linked dominant protoporphyria without anemia or iron overload, Am J Hum Genet, vol.83, pp.408-414, 2008.

L. Gouya, Modulation of the phenotype in dominant erythropoietic protoporphyria by a low expression of the normal ferrochelatase allele, Am J Hum Genet, vol.58, pp.292-299, 1996.

S. D. Whatley and M. N. Badminton, Role of genetic testing in the management of patients with inherited porphyria and their families, Ann Clin Biochem, vol.50, pp.204-216, 2013.

T. A. Baker and R. T. Sauer, ClpXP, an ATP-powered unfolding and protein-degradation machine, Biochim Biophys Acta, vol.1823, pp.15-28, 2012.

J. R. Kardon, Mitochondrial ClpX activates a key enzyme for heme biosynthesis and erythropoiesis, Cell, vol.161, pp.858-867, 2015.

Y. Kubota, Novel mechanisms for heme-dependent degradation of ALAS1 protein as a component of negative feedback regulation of heme biosynthesis, J Biol Chem, vol.291, pp.20516-20529, 2016.

Y. Y. Yien and J. J. Bieker, Functional interactions between erythroid Krüppel-like factor (EKLF/KLF1) and protein phosphatase PPM1B/PP2C?, J Biol Chem, vol.287, pp.15193-15204, 2012.

K. J. Quadrini and J. J. Bieker, EKLF/KLF1 is ubiquitinated in vivo and its stability is regulated by activation domain sequences through the 26S proteasome, FEBS Lett, vol.580, pp.2285-2293, 2006.

K. Laghmani, Polyhydramnios, transient antenatal Bartter's syndrome, and MAGED2 mutations, N Engl J Med, vol.374, pp.1853-1863, 2016.

S. Ducamp, Molecular and functional analysis of the C-terminal region of human erythroid-specific 5-aminolevulinic synthase associated with X-linked dominant protoporphyria (XLDPP), Hum Mol Genet, vol.22, pp.1280-1288, 2013.

T. Schneider-poetsch, Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin, Nat Chem Biol, vol.6, pp.209-217, 2010.

S. G. Kang, Functional proteolytic complexes of the human mitochondrial ATP-dependent protease, hClpXP, J Biol Chem, vol.277, pp.21095-21102, 2002.

A. Martin, T. A. Baker, and R. T. Sauer, Distinct static and dynamic interactions control ATPase-peptidase communication in a AAA+ protease, Mol Cell, vol.27, pp.41-52, 2007.

S. A. Joshi, G. L. Hersch, T. A. Baker, and R. T. Sauer, Communication between ClpX and ClpP during substrate processing and degradation, Nat Struct Mol Biol, vol.11, pp.404-411, 2004.

Q. Tian, Lon peptidase 1 (LONP1)-dependent breakdown of mitochondrial 5-aminolevulinic acid synthase protein by heme in human liver cells, J Biol Chem, vol.286, pp.26424-26430, 2011.

A. O. Olivares, T. A. Baker, and R. T. Sauer, Mechanistic insights into bacterial AAA+ proteases and protein-remodelling machines, Nat Rev Microbiol, vol.14, pp.33-44, 2016.

J. H. Seo, The mitochondrial unfoldase-peptidase complex ClpXP controls bioenergetics stress and metastasis, PLoS Biol, vol.14, p.1002507, 2016.

S. S. Deepa, Down-regulation of the mitochondrial matrix peptidase ClpP in muscle cells causes mitochondrial dysfunction and decreases cell proliferation, Free Radic Biol Med, vol.91, pp.281-292, 2016.

M. Gersch, Barrel-shaped ClpP proteases display attenuated cleavage specificities, ACS Chem Biol, vol.11, pp.389-399, 2016.

E. M. Jenkinson, Perrault syndrome is caused by recessive mutations in CLPP, encoding a mitochondrial ATP-dependent chambered protease, Am J Hum Genet, vol.92, pp.605-613, 2013.

K. Furuyama, Pyridoxine refractory X-linked sideroblastic anemia caused by a point mutation in the erythroid 5-aminolevulinate synthase gene, Blood, vol.90, pp.822-830, 1997.

P. D. Cotter, M. Baumann, and D. F. Bishop, Enzymatic defect in "X-linked" sideroblastic anemia: Molecular evidence for erythroid delta-aminolevulinate synthase deficiency, Proc Natl Acad Sci, vol.89, pp.4028-4032, 1992.

T. C. Cox, M. J. Bawden, A. Martin, and B. K. May, Human erythroid 5-aminolevulinate synthase: Promoter analysis and identification of an iron-responsive element in the mRNA, EMBO J, vol.10, pp.1891-1902, 1991.

E. Prades, A new mutation of the ALAS2 gene in a large family with X-linked sideroblastic anemia, Hum Genet, vol.95, pp.424-428, 1995.

J. Barman-aksözen, E. I. Minder, C. Schubiger, G. Biolcati, and X. Schneider-yin, In ferrochelatase-deficient protoporphyria patients, ALAS2 expression is enhanced and erythrocytic protoporphyrin concentration correlates with iron availability, Blood Cells Mol Dis, vol.54, pp.71-77, 2015.

S. Lyoumi, Increased plasma transferrin, altered body iron distribution, and microcytic hypochromic anemia in ferrochelatase-deficient mice, Blood, vol.109, pp.811-818, 2007.

C. Delaby, Excessive erythrocyte PPIX influences the hematologic status and iron metabolism in patients with dominant erythropoietic protoporphyria, Cell Mol Biol, vol.55, pp.45-52, 2009.

D. N. Egan, Z. Yang, J. Phillips, and J. L. Abkowitz, Inducing iron deficiency improves erythropoiesis and photosensitivity in congenital erythropoietic porphyria, Blood, vol.126, pp.257-261, 2015.

A. C. Deacon and G. H. Elder, Front line tests for the investigation of suspected porphyria, ACP Best Practice, vol.165, pp.500-507, 2001.

W. H. Lockwood, V. Poulos, E. Rossi, and D. H. Curnow, Rapid procedure for fecal porphyrin assay, Clin Chem, vol.31, pp.1163-1167, 1985.

C. K. Lim, F. M. Li, and T. J. Peters, High-performance liquid chromatography of porphyrins, J Chromatogr A, vol.429, pp.123-153, 1988.

Y. Y. Yien, TMEM14C is required for erythroid mitochondrial heme metabolism, J Clin Invest, vol.124, pp.4294-4304, 2014.

C. Chen, Snx3 regulates recycling of the transferrin receptor and iron assimilation, Cell Metab, vol.17, pp.343-352, 2013.

S. E. Glynn, A. Martin, A. R. Nager, T. A. Baker, and R. T. Sauer, Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine, Cell, vol.139, pp.744-756, 2009.