P. M. Vanhoutte, H. Shimokawa, M. Feletou, and E. Tang, Endothelial dysfunction and vascular disease -a 30th anniversary update, Acta Physiol, vol.219, issue.1, pp.22-96, 2017.

C. Farah, L. Michel, and J. Balligand, Nitric oxide signalling in cardiovascular health and disease, Nat Rev Cardiol, vol.15, issue.5, pp.292-316, 2018.

M. E. Ramet, M. Ramet, and Q. Lu, High-density lipoprotein increases the abundance of eNOS protein in human vascular endothelial cells by increasing its half-life, J Am Coll Cardiol, vol.41, issue.12, pp.2288-2297, 2003.

J. T. Kuvin, M. E. Ramet, A. R. Patel, N. G. Pandian, M. E. Mendelsohn et al., A novel mechanism for the beneficial vascular effects of high-density lipoprotein cholesterol: enhanced vasorelaxation and increased endothelial nitric oxide synthase expression, Am Hear J, vol.144, issue.1, pp.165-172, 2002.

C. Mineo, I. S. Yuhanna, M. J. Quon, and P. W. Shaul, High density lipoprotein-induced endothelial nitricoxide synthase activation is mediated by Akt and MAP kinases, J Biol Chem, vol.278, issue.11, pp.9142-9149, 2003.

J. R. Nofer, M. Van-der-giet, and M. Tolle, HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3, J Clin Invest, vol.113, issue.4, pp.569-581, 2004.

C. Besler, K. Heinrich, and L. Rohrer, Mechanisms underlying adverse effects of HDL on eNOSactivating pathways in patients with coronary artery disease, J Clin Invest, vol.121, issue.7, pp.2693-2708, 2011.

L. Carvalho, N. Panzoldo, and S. N. Santos, HDL levels and oxidizability during myocardial infarction are associated with reduced endothelial-mediated vasodilation and nitric oxide bioavailability, Atherosclerosis, vol.237, issue.2, pp.840-846, 2014.

L. E. Spieker, I. Sudano, and D. Hürlimann, High-density lipoprotein restores endothelial function in hypercholesterolemic men, Circulation, vol.105, issue.12, pp.1399-1402, 2002.

R. J. Bisoendial, G. K. Hovingh, and J. H. Levels, Restoration of endothelial function by increasing high-density lipoprotein in subjects with isolated low high-density lipoprotein, Circulation, vol.107, issue.23, pp.2944-2948, 2003.

I. S. Yuhanna, Y. Zhu, and B. E. Cox, High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase, Nat Med, vol.7, issue.7, pp.853-857, 2001.

X. A. Li, W. B. Titlow, and B. A. Jackson, High density lipoprotein binding to scavenger receptor, Class B, type I activates endothelial nitric-oxide synthase in a ceramide-dependent manner, J Biol Chem, vol.277, issue.13, pp.11058-11063, 2002.

M. Gong, M. Wilson, and T. Kelly, HDL-associated estradiol stimulates endothelial NO synthase and vasodilation in an SR-BI-dependent manner, J Clin Invest, vol.111, issue.10, pp.1579-1587, 2003.

B. F. Asztalos and P. S. Roheim, Presence and formation of "free apolipoprotein A-I-like" particles in human plasma, Arter Thromb Vasc Biol, vol.15, issue.9, pp.1419-1423, 1995.

A. Barrans, X. Collet, and R. Barbaras, Hepatic lipase induces the formation of pre-ß1 high density lipoprotein (HDL) from triacylglycerol-rich HDL2, J Biol Chem, vol.269, pp.11572-11577, 1994.

B. Jaspard, X. Collet, and R. Barbaras, Biochemical characterization of pre-b1 high-density lipoprotein from human ovarian follicular fluid: evidence for the presence of a lipid core, Biochemistry, vol.35, pp.1352-1357, 1996.

K. A. Rye and P. J. Barter, Formation and metabolism of prebeta-migrating, lipid-poor apolipoprotein A-I, Arter Thromb Vasc Biol, vol.24, issue.3, pp.421-428, 2004.

B. G. Drew, N. H. Fidge, G. Gallon-beaumier, B. E. Kemp, and B. A. Kingwell, High-density lipoprotein and apolipoprotein AI increase endothelial NO synthase activity by protein association and multisite phosphorylation, Proc Natl Acad Sci U S A, vol.101, issue.18, pp.6999-7004, 2004.

J. Ou, J. Wang, and H. Xu, Effects of D-4F on vasodilation and vessel wall thickness in hypercholesterolemic LDL receptor-null and LDL receptor/apolipoprotein A-I double-knockout mice on Western diet, Circ Res, vol.97, issue.11, pp.1190-1197, 2005.

L. O. Martinez, S. Jacquet, and J. P. Esteve, Ectopic beta-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis, Nature, vol.421, issue.6918, pp.75-79, 2003.

C. Radojkovic, A. Genoux, and V. Pons, Stimulation of Cell Surface F1-ATPase Activity by Apolipoprotein A-I Inhibits Endothelial Cell Apoptosis and Promotes Proliferation, Arter Thromb Vasc Biol, vol.29, issue.7, pp.1125-1130, 2009.

C. Cavelier, P. M. Ohnsorg, L. Rohrer, and A. Von-eckardstein, The beta-Chain of Cell Surface F0F1

, ATPase Modulates ApoA-I and HDL Transcytosis Through Aortic Endothelial Cells, Arter Thromb Vasc Biol, vol.32, issue.1, pp.131-139, 2012.

V. González-pecchi, S. Valdés, and V. Pons, Apolipoprotein A-I enhances proliferation of human endothelial progenitor cells and promotes angiogenesis through the cell surface ATP synthase, Microvasc Res, vol.98, pp.9-15, 2015.

L. O. Martinez, S. Najib, B. Perret, C. Cabou, and L. Lichtenstein, Ecto-F1-ATPase/P2Y pathways in metabolic and vascular functions of high density lipoproteins, Atherosclerosis, vol.238, issue.1, pp.89-100, 2015.

A. Fabre, C. Malaval, B. Addi, and A. , P2Y13 receptor is critical for reverse cholesterol transport, Hepatology, vol.52, issue.4, pp.1477-1483, 2010.

N. Serhan, C. Cabou, and C. Verdier, Chronic pharmacological activation of P2Y13 receptor in mice decreases HDL-cholesterol level by increasing hepatic HDL uptake and bile acid secretion, Biochim Biophys Acta -Mol Cell Biol Lipids, vol.1831, issue.4, pp.719-725, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-01054874

A. Castaing-berthou, N. Malet, and C. Radojkovic, PI3K? Plays a Key Role in Apolipoprotein A-I-Induced Endothelial Cell Proliferation Through Activation of the Ecto-F1-ATPase/P2Y1 Receptors, Cell Physiol Biochem, vol.42, issue.2, pp.579-593, 2017.

C. G. Da-silva, R. Jarzyna, A. Specht, and E. Kaczmarek, Extracellular nucleotides and adenosine independently activate AMP-activated protein kinase in endothelial cells: involvement of P2 receptors and adenosine transporters, Circ Res, vol.98, issue.5, pp.39-47, 2006.

S. Wang, A. Iring, and B. Strilic, P2Y2 and Gq/G11 control blood pressure by mediating endothelial mechanotransduction, J Clin Invest, vol.125, issue.8, pp.3077-3086, 2015.

A. Wihlborg, M. Malmsjö, A. Eyjolfsson, R. Gustafsson, K. Jacobson et al., Extracellular nucleotides induce vasodilatation in human arteries via prostaglandins, nitric oxide and endothelium-derived hyperpolarising factor, Br J Pharmacol, vol.138, issue.8, pp.1451-1458, 2003.

P. J. Guns, T. Van-assche, P. Fransen, B. Robaye, J. M. Boeynaems et al., Endothelium-dependent relaxation evoked by ATP and UTP in the aorta of P2Y2-deficient mice, Br J Pharmacol, vol.147, issue.5, pp.569-574, 2006.

P. Guns, A. Korda, and H. M. Crauwels, Pharmacological characterization of nucleotide P2Y receptors on endothelial cells of the mouse aorta, Br J Pharmacol, vol.146, issue.2, pp.288-295, 2005.

K. Yamamoto, T. Sokabe, and T. Matsumoto, Impaired flow-dependent control of vascular tone and remodeling in P2X4-deficient mice, Nat Med, vol.12, issue.1, pp.133-137, 2006.

P. F. Mount, B. E. Kemp, and D. A. Power, Regulation of endothelial and myocardial NO synthesis by multisite eNOS phosphorylation, J Mol Cell Cardiol, vol.42, issue.2, pp.271-279, 2007.

J. V. Bason, M. J. Runswick, I. M. Fearnley, and J. E. Walker, Binding of the inhibitor protein IF1 to bovine F 1-ATPase, J Mol Biol, vol.406, issue.3, pp.443-453, 2011.

R. Mangiullo, A. Gnoni, A. Leone, G. Gnoni, S. Papa et al., Structural and functional characterization of F(o)F(1)-ATP synthase on the extracellular surface of rat hepatocytes, Biochim Biophys Acta, vol.1777, issue.10, pp.1326-1335, 2008.

T. Lee, C. Pan, and C. Peng, Anti-atherogenic effect of berberine on LXRalpha-ABCA1-dependent cholesterol efflux in macrophages, J Cell Biochem, vol.111, issue.1, pp.104-110, 2010.

M. Sharma, V. Zychlinski-kleffmann, A. Porteous, C. M. Jones, G. T. Williams et al., Lipoprotein (a) upregulates ABCA1 in liver cells via scavenger receptor-B1 through its oxidized phospholipids, J Lipid Res, vol.56, issue.7, pp.1318-1328, 2015.

L. Wang, L. Karlsson, and S. Moses, P2 receptor expression profiles in human vascular smooth muscle and endothelial cells, J Cardiovasc Pharmacol, vol.40, issue.6, pp.841-853, 2002.

J. Shen and P. E. Dicorleto, ADP stimulates human endothelial cell migration via P2Y1 nucleotide receptor-mediated mitogen-activated protein kinase pathways, Circ Res, vol.102, issue.4, pp.448-456, 2008.

B. Hechler and C. Gachet, P2 receptors and platelet function, Purinergic Signal, vol.7, issue.3, pp.293-303, 2011.

D. Suplat, P. Krzemi?ski, P. Pomorski, and J. Bara?ska, P2Y(1) and P2Y(12) receptor cross-talk in calcium signalling: Evidence from nonstarved and long-term serum-deprived glioma C6 cells, Purinergic Signal, vol.3, issue.3, pp.221-230, 2007.

K. Yoshioka, O. Saitoh, and H. Nakata, Agonist-promoted heteromeric oligomerization between adenosine A(1) and P2Y(1) receptors in living cells, FEBS Lett, vol.523, issue.1-3, pp.147-151, 2002.

D. Silva, C. G. Specht, A. Wegiel, B. Ferran, C. Kaczmarek et al., Mechanism of purinergic activation of endothelial nitric oxide synthase in endothelial cells, Circulation, vol.119, issue.6, pp.871-879, 2009.

C. N. Hess, R. Kou, R. P. Johnson, G. K. Li, and T. Michel, ADP signaling in vascular endothelial cells: ADPdependent activation of the endothelial isoform of nitric-oxide synthase requires the expression but not the kinase activity of AMP-activated protein kinase, J Biol Chem, vol.284, issue.47, pp.32209-32224, 2009.

S. B. Bender, Z. C. Berwick, M. H. Laughlin, and J. D. Tune, Functional contribution of P2Y1 receptors to the control of coronary blood flow, J Appl Physiol, vol.111, issue.6, pp.1744-1750, 2011.

M. Wareing, S. L. Greenwood, M. J. Taggart, and P. N. Baker, Vasoactive responses of veins isolated from the human placental chorionic plate, Placenta, vol.24, issue.7, pp.790-796, 2003.

R. F. Furchgott and J. V. Zawadzki, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine, Nature, vol.288, issue.5789, pp.373-376, 1980.

A. Spiers and N. Padmanabhan, A guide to wire myography, Methods Mol Med, vol.108, pp.91-104, 2005.

S. Jacquet, C. Malaval, and L. O. Martinez, The nucleotide receptor P2Y13 is a key regulator of hepatic high-density lipoprotein (HDL) endocytosis, Cell Mol Life Sci, vol.62, issue.21, pp.2508-2515, 2005.

C. Malaval, M. Laffargue, and R. Barbaras, RhoA/ROCK I signalling downstream of the P2Y13 ADP-receptor controls HDL endocytosis in human hepatocytes, Cell Signal, vol.21, issue.1, pp.120-127, 2009.

L. Lichtenstein, N. Serhan, and W. Annema, Lack of P2Y13 in mice fed a high cholesterol diet results in decreased hepatic cholesterol content, biliary lipid secretion and reverse cholesterol transport, Nutr Metab, vol.10, issue.1, pp.67-73, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00914762

L. Lichtenstein, N. Serhan, and S. Espinosa-delgado, Increased Atherosclerosis in P2Y13 / Apolipoprotein E Double-Knockout Mice: Contribution of P2Y13 to Reverse Cholesterol Transport, Cardiovasc Res, vol.106, issue.2, pp.315-323, 2015.

A. W. Lohman, M. Billaud, and B. E. Isakson, Mechanisms of ATP release and signalling in the blood vessel wall, Cardiovasc Res, vol.95, issue.3, pp.269-280, 2012.

Y. Hellsten, D. Maclean, G. Rådegran, B. Saltin, and J. Bangsbo, Adenosine concentrations in the interstitium of resting and contracting human skeletal muscle, Circulation, vol.98, issue.1, pp.6-8, 1998.

Y. Fu, Y. Hou, and C. Fu, A novel mechanism of ?/? T-lymphocyte and endothelial activation by shear stress: the role of ecto-ATP synthase ? chain, Circ Res, vol.108, issue.4, pp.410-417, 2011.

L. P. Bharath, J. M. Cho, and S. Park, Endothelial Cell Autophagy Maintains Shear StressInduced Nitric Oxide Generation via Glycolysis-Dependent Purinergic Signaling to Endothelial Nitric Oxide Synthase, Arterioscler Thromb Vasc Biol, vol.37, issue.9, pp.1646-1656, 2017.

Y. D. Wijeyeratne and S. Heptinstall, Anti-platelet therapy: ADP receptor antagonists, Br J Clin Pharmacol, vol.72, issue.4, pp.647-657, 2011.

E. H. Heiss and V. M. Dirsch, Regulation of eNOS enzyme activity by posttranslational modification, Curr Pharm Des, vol.20, issue.22, pp.3503-3513, 2014.

J. Igarashi and T. Michel, Sphingosine 1-phosphate and isoform-specific activation of phosphoinositide 3-kinase beta. Evidence for divergence and convergence of receptor-regulated endothelial nitric-oxide synthase signaling pathways, J Biol Chem, vol.276, issue.39, pp.36281-36288, 2001.

A. Uruno, A. Sugawara, and H. Kanatsuka, Upregulation of nitric oxide production in vascular endothelial cells by all-trans retinoic acid through the phosphoinositide 3-kinase/Akt pathway, Circulation, vol.112, issue.5, pp.727-736, 2005.

A. Tran-dinh, D. Diallo, and S. Delbosc, HDL and endothelial protection, Br J Pharmacol, vol.169, issue.3, pp.493-511, 2013.

N. Terasaka, S. Yu, and L. Yvan-charvet, ABCG1 and HDL protect against endothelial dysfunction in mice fed a high-cholesterol diet, J Clin Invest, vol.118, issue.11, pp.3701-3713, 2008.

A. Mulya, J. Lee, A. K. Gebre, M. J. Thomas, P. L. Colvin et al., Minimal lipidation of pre-beta HDL by ABCA1 results in reduced ability to interact with ABCA1, Arterioscler Thromb Vasc Biol, vol.27, issue.8, pp.1828-1836, 2007.

C. Vedhachalam, A. B. Ghering, W. S. Davidson, S. Lund-katz, G. H. Rothblat et al., ABCA1-induced cell surface binding sites for ApoA-I, Arterioscler Thromb Vasc Biol, vol.27, issue.7, pp.1603-1609, 2007.

B. L. Vaisman, S. J. Demosky, and J. A. Stonik, Endothelial expression of human ABCA1 in mice increases plasma HDL cholesterol and reduces diet-induced atherosclerosis, J Lipid Res, vol.53, issue.1, pp.158-167, 2012.

C. Cavelier, L. Rohrer, and A. Von-eckardstein, ATP-Binding cassette transporter A1 modulates apolipoprotein A-I transcytosis through aortic endothelial cells, Circ Res, vol.99, issue.10, pp.1060-1066, 2006.

O. Miyazaki, J. Ogihara, I. Fukamachi, and T. Kasumi, Evidence for the presence of lipid-free monomolecular apolipoprotein A-1 in plasma, J Lipid Res, vol.55, issue.2, pp.214-225, 2014.

M. N. Nanjee and E. A. Brinton, Very small apolipoprotein A-I-containing particles from human plasma: isolation and quantification by high-performance size-exclusion chromatography, Clin Chem, vol.46, issue.2, pp.207-223, 2000.

B. Jaspard, N. Fournier, and G. Vieitez, Structural and functional comparison of HDL from homologous human plasma and follicular fluid. A model for extravascular fluid, Arter Thromb Vasc Biol, vol.17, issue.8, pp.1605-1613, 1997.

B. Shao, Site-specific oxidation of apolipoprotein A-I impairs cholesterol export by ABCA1, a key cardioprotective function of HDL, Biochim Biophys Acta, vol.1821, issue.3, pp.490-501, 2012.

Y. Huang, J. A. Didonato, and B. S. Levison, An abundant dysfunctional apolipoprotein A1 in human atheroma, Nat Med, vol.20, issue.2, pp.193-203, 2014.

J. A. Didonato, K. Aulak, and Y. Huang, Site-specific nitration of apolipoprotein A-I at tyrosine 166 is both abundant within human atherosclerotic plaque and dysfunctional, J Biol Chem, vol.289, issue.15, pp.10276-10292, 2014.

I. Lang, M. A. Pabst, and U. Hiden, Heterogeneity of microvascular endothelial cells isolated from human term placenta and macrovascular umbilical vein endothelial cells, Eur J Cell Biol, vol.82, issue.4, pp.163-173, 2003.

L. Sobrevia, F. Abarzúa, and J. Nien, Review: Differential placental macrovascular and microvascular endothelial dysfunction in gestational diabetes, Placenta, vol.32, issue.2, pp.159-164, 2011.

A. E. Errasti, L. I. Luciani, and C. E. Cesio, Potentiation of adrenaline vasoconstrictor response by sub-threshold concentrations of U-46619 in human umbilical vein: involvement of smooth muscle prostanoid TP(alpha) receptor isoform, Eur J Pharmacol, vol.562, issue.3, pp.227-235, 2007.

D. C. Ellinsworth, N. Shukla, I. Fleming, and J. Y. Jeremy, Interactions between thromboxane A?, thromboxane/prostaglandin (TP) receptors, and endothelium-derived hyperpolarization, Cardiovasc Res, vol.102, issue.1, pp.9-16, 2014.

P. E. Fielding, K. Nagao, H. Hakamata, G. Chimini, and C. J. Fielding, A two-step mechanism for free cholesterol and phospholipid efflux from human vascular cells to apolipoprotein A-1, Biochemistry, vol.39, issue.46, pp.14113-14133, 2000.

K. Ishida, T. Matsumoto, K. Taguchi, K. Kamata, and T. Kobayashi, Mechanisms underlying reduced P2Y(1) -receptor-mediated relaxation in superior mesenteric arteries from long-term streptozotocin-induced diabetic rats, Acta Physiol (Oxf), vol.207, issue.1, pp.130-141, 2013.

R. J. Havel, H. A. Eder, and J. R. Bragdon, The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum, J Clin Invest, vol.34, pp.1345-1353, 1955.

E. G. Bligh and W. J. Dyer, A rapid method of total lipid extraction and purification, Can J Biochem Physiol, vol.37, issue.8, pp.911-917, 1959.

L. O. Martinez, V. Georgeaud, and C. Rolland, Characterization of Two High-Density Lipoprotein Binding Sites on Porcine Hepatocyte Plasma Membranes: Contribution of Scavenger Receptor Class B Type I (SR-BI) to the Low-Affinity Component, Biochemistry, vol.39, issue.5, pp.1076-1082, 2000.

E. Cabezon, P. J. Butler, M. J. Runswick, and J. E. Walker, Modulation of the oligomerization state of the bovine F1-ATPase inhibitor protein, IF1, by pH, J Biol Chem, vol.275, issue.33, pp.25460-25464, 2000.

M. González, V. Gallardo, and N. Rodríguez, Insulin-stimulated L-arginine transport requires SLC7A1 gene expression and is associated with human umbilical vein relaxation, J Cell Physiol, vol.226, issue.11, pp.2916-2924, 2011.

T. Duparc, A. Colom, and P. D. Cani, Central Apelin Controls Glucose Homeostasis via a Nitric Oxide-Dependent Pathway in Mice, Antioxid Redox Signal, vol.15, issue.6, pp.1477-1496, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00617581

M. Abramovitz, M. Adam, and Y. Boie, The utilization of recombinant prostanoid receptors to determine the affinities and selectivities of prostaglandins and related analogs, Biochim Biophys Acta, vol.1483, issue.2, pp.285-293, 2000.

M. González, S. Rojas, and P. Avila, Insulin reverses D-glucose-increased nitric oxide and reactive oxygen species generation in human umbilical vein endothelial cells, PLoS One, vol.10, issue.4, pp.1-23, 2015.

C. Cabou, G. Campistron, and N. Marsollier, Brain glucagon-like peptide-1 regulates arterial blood flow, heart rate, and insulin sensitivity, Diabetes, vol.57, issue.10, pp.2577-2587, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00408890

, FIGURE LEGENDS Figure 1: APOA1 increases eNOS activity and NO production in human endothelial cells and mouse aortas. Endothelial NOS activity was quantified in HUVECs by measuring the conversion of

, Nitric oxide production in HUVECs was measured by using the NO-sensitive fluorescence probe DAF-FM-DA. NO release from mouse aortas was evaluated ex vivo by amperometric measurement. A) eNOS activity in the presence of increasing concentrations of APOA1. B) eNOS activity under the basal condition or in the presence of APOA1 (50 µg ? mL -1 ) with or without prior treatment with L-NAME (100 nmol ? L -1 ). C) Time course of NO production under the basal condition (PBS) or in the presence of APOA1 (50 µg ? mL -1 ). D) NO production under the basal condition or in the presence of APOA1

, Real-time NO release in aortas incubated for 10 min with 25 or 50 µg ? mL -1 APOA1 or vehicle (PBS). F) Measurement of real-time NO release from aortas incubated with APOA1 (50 µg ? mL -1 ) or vehicle (PBS) with or without L-NMMA (500 µmol ? L -1 ). n = 3 independent experiments, APOA2 (50 µg ? L -1 ) was used as a control. E)

E. and F. , * p<0.05, ? p<0.01, and ? p<0.001 compared to the control without APOA1 (PBS alone) or as indicated. NS indicates not significant, p.0

, Figure 2: APOA1 increases eNOS phosphorylation at serine 1177 through the activation of ecto-F1-ATPase. A) eNOS phosphorylation (p-Ser 1177 ) was assessed in HUVECs incubated with APOA1, p.50

, Measurement of eNOS phosphorylation in HUVECs pre-incubated for 30 min with IF1 (1.8 µmol ? L -1 ), then stimulated for 30 min with APOA1 (50 µg ? mL -1 ). C, Representative images of phospho-Ser 1177 -eNOS in the endothelial lining of mouse aortic sections (n = 6 aortas per each condition). Aortas were incubated with APOA1 (50 µg ? mL -1 ) for 10 min with or without prior treatment with IF1 (1.8 µmol ? L -1 ) for 10 min, µg ? mL -1 ) for different times. B)

, Arrows indicate phospho-eNOS staining in the endothelial lining (original magnification, ×200, scale bare indicates 100 µm). Immunoblots are representative of three independent experiments, µmol ? L -1 )

*. P&lt;0, 05 and ? p<0.01 compared to the control without APOA1 (PBS alone) or as indicated