Can we learn from coupling EEG-fMRI to enhance neuro-feedback in EEG only?
Claire Cury, Pierre Maurel, Rémi Gribonval, Christian Barillot

To cite this version:
Claire Cury, Pierre Maurel, Rémi Gribonval, Christian Barillot. Can we learn from coupling EEG-fMRI to enhance neuro-feedback in EEG only?. OHBM 2019 - Annual Meeting Organization for Human Brain Mapping, Jun 2019, Rome, Italy. inserm-02074623

HAL Id: inserm-02074623
https://www.hal.inserm.fr/inserm-02074623
Submitted on 5 Jun 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Can we learn from coupling EEG-fMRI to enhance neuro-feedback in EEG only?

C. Cury1,2, P. Maurel1, R. Gribonval2 and C. Barillot1

1– CNRS, Inserm, Inria, Univ Rennes, IRISA, Empenn team
2– CNRS, Inria, Univ Rennes, IRISA, Panama team

INTRODUCTION

Neuro-feedback (NF): Learn to control your brain with your brain.

EEG and fMRI, grounds solutions in the context of brain rehabilitation protocols.

EEG and fMRI provide complementary information.

EEG is easy to use, fMRI is a costly and exhausting for patients modality.

Bi-modal NF:
- Records and synchronises EEG and fMRI signals, in real time (Mano et al).
- Combines NF-EEG and NF-fMRI advantages
- Improve the quality of NF sessions (Perronnet et al).
- It is not portable or easy to use, due to the fMRI modality.

→ Can we enhance NF in EEG only, from a previous bi-modal NF session?

METHOD

- **Design and strategy:** Machine learning mechanism based on bimodal NF scores and EEG signals.

- **Model:** Non-linear structured design matrix X

 \[X(t) = [X_0; X_3; X_4; X_5] \in \mathbb{R}^{T \times 4 \times B} \text{, with } X_i \in \mathbb{R}^{T \times E \times B} \]

 \[X_0(t, e, b) = Freq(EEG(e, l), F_b) \quad \forall t \in \{1, ..., T\} \text{ and } \forall b \in \{1, ..., B\} \]

 \[X_3(t, e, b) = X_0(t, e, b) \ast HRF(3) \quad \forall e \in \{1, ..., E\} \]

 \[X_4(t, e, b) = X_0(t, e, b) \ast HRF(4) \quad \forall e \in \{1, ..., E\} \]

 \[X_5(t, e, b) = X_0(t, e, b) \ast HRF(5) \quad \forall e \in \{1, ..., E\} \]

- **Optimisation:** Structured sparse regularisation following 3 conditions:
 1. Spatial sparsity
 2. Smooth across frequency bands

\[
\hat{\alpha} = \arg \min_{\alpha} \sum_{t=1}^{T} \frac{1}{2} \| NF(t) - \langle X(t), \alpha \rangle \|^2 + \lambda \| \alpha \|_1 + \rho \| \alpha \|_2
\]

Cond 1. and 2. Cond 3.

RESULTS

- **Significant information from NF-fMRI can be captured by the model, and enhance EEG only neurofeedback.**
- **Prediction with NF-predictor S with a median correlation of 0.74**

 - Method tested on 17 subjects with 3 bimodal neuro-feedback sessions of motor imagery tasks.
 - We tested 5 NF-predictors:
 1. $\hat{y}_{NF}(t) = \langle X, \hat{\alpha}_c \rangle$, learned from X and $NF_c = NF-EEG + NF-fMRI$
 2. $\hat{y}_{NF}(t) = \langle X, \hat{\alpha}_c \rangle$, learned from X_c and EEG
 3. $\hat{y}_{NF}(t) = \langle X, \hat{\alpha}_c \rangle$, learned from X_c and NF-fMRI
 4. $\hat{y}_{NF}(t) + \hat{y}_{NF}(t) + \hat{y}_{NF}(t)$
 5. $\hat{y}_{EEG}(t) + \hat{y}_{EEG}(t)$, with $\hat{y}_{EEG}(t) = NF-EEG(t)$

 ![Example of prediction](image)

 ![Average and absolute activation patterns](image)

References:

