On the genetic bases of incomplete hippocampal inversion: a genome-wide association study

Claire Cury, Marzia A Scelzi, Roberto Toro, Vincent Frouin, Eric Artiges, Andreas Heinz, Henrik Walter, Hervé Lemaître, Jean-Luc Martinot, Jean-Baptiste Poline, et al.

To cite this version:

HAL Id: inserm-02074616
https://www.hal.inserm.fr/inserm-02074616
Submitted on 5 Jun 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
On the genetic bases of incomplete hippocampal inversion: a genome-wide association study

Claire Cury1,2, Marzia Antonella Scelsi2, Roberto Toro3, Vincent Frouin4, Eric Artiges1, Andreas Heinz5, Henrik Walter6, Hervé Lemaître4, Jean-Luc Martinot7, Jean-Baptiste Poline8, Michael Smolka9, Gunter Schumann10, Andre Altmann12, Olivier Colliot12

1 Inria/IRISA Rennes, France. 2 University College London, UK. 3 Institut Pasteur, France. 4 CEA, Neurospin, France. 5 INSERM Unit 1000, France. 6 Charité-Universitätsmedizin, Germany. 8 Hôpital Necker, Paris, France. 9 McGill University, Canada. 10 Technische Universität Dresden, Germany. 11 King’s College London, UK. 12 Aramis lab, ICM, France.

INTRODUCTION

Incomplete hippocampal inversion (IHI), is an anatomical variant of the hippocampus present in about 20% of healthy individuals (Baulac et al., 1998; Bajic et al., 2008, Bernasconi et al., 2005, Cury et al., 2015).

- We performed the first genome-wide association study (GWAS) of IHI to unveil the genetic factors that may contribute to incomplete inversion during brain development.

METHODS

<table>
<thead>
<tr>
<th>DATA</th>
<th>DISCOVERY COHORT: IMAGEN (N = 1381)</th>
<th>VALIDATION COHORT: PING (N = 161)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTION</td>
<td>mean age=14.5 years 49.7% females</td>
<td>mean age=16.1 years 48.4% females</td>
</tr>
<tr>
<td>GENOTYPING</td>
<td>blood samples on 610-Quad SNP and 660-Quad SNP arrays from Illumina</td>
<td>saliva samples on Human660W-Quad arrays from Illumina</td>
</tr>
<tr>
<td>ANCESTRY</td>
<td>European</td>
<td>European</td>
</tr>
<tr>
<td>IHI</td>
<td>26.1%</td>
<td>23.6%</td>
</tr>
</tbody>
</table>

IHI scoring (Curé et al., 2015):
- Manual scoring of the IHI using individual criteria (Curé et al. 2015)
- A cut off at 4 was used to classify hippocampi in the IHI group or in the non-IHI.

Pre-processed steps:
- Raw genotyping data were prepared for imputation and haplotype reference consortium (HRC) v1.1
- SNPs were imputed on the Sanger imputation server using EAGLE2 for pre-phasing and PBWT for imputation.
- QC was conducted on SNP level leaving 6,742,645 SNPs across the autosomes for the association analysis.

GWAS with Plink v1.9:
- assuming an additive genetic model
- correcting for sex, age and five principal components for population structure and with a standard genome-wide threshold of p<5e-8.

SNPs selection for validation:
- Validation cohort: SNPs exceeding the threshold for suggestive association with IHI (p<1e-5).
- If the top SNP not genotyped in PING, LDLink2 was used to identify a proxy in linkage disequilibrium LD (r2) within +/- 50kb of its location.

GWAS summary statistics:
- Statistics annotated using the Functional Mapping and Annotation (FUMA)3.
- IHI heritability estimated from GWAS statistics using LD score regression method (Bulik-Sullivan et al., 2015).

RESULTS

- A locus on 18q11.2 (rs99552569; OR=1.999; Z=5.502; P=3.756e-8) showed a significant association with the presence of IHI.
- Functional annotation of the locus implicated the genes AQP4 (Aquaporin -4) and KCNT1 (Potassium Channel Tetramerization Domain Containing 1).

- The gene KCNT1 negatively regulates the AP-2 family of transcription factors and the Wnt signaling pathway, which controls normal embryonic development, cellular proliferation and growth (Li et al., 2014).
- The gene AQP4 is a bidirectional water channel that is found on astrocytes throughout the central nervous system.

- Neither this locus nor the other 16 suggestive loci reached a significant p-value in the validation analysis.

- The inferred heritability was substantial with h²=0.54 (sd: 0.30) and was significant (Z=1.8; P=0.036).

- WE PROPOSED THE FIRST GENOME-WIDE ASSOCIATION STUDY OF IHI, WHERE WE IDENTIFIED A GENOME-WIDE SIGNIFICANT LOCUS.

- THIS LOCUS WAS NOT SIGNIFICANT IN THE VALIDATION COHORT.

- ADDITIONAL EXPLORATION OF THE RESULTING SUMMARY STATISTICS REVEALED A HIGH HERITABILITY.

