. Sodium, VCAM: Vascular cell adhesion molecule, VEGF: Vascular Endothelial Growth Factor. References 1. Firestein GS: Evolving concepts of rheumatoid arthritis, Nature, vol.423, pp.356-361, 2003.

M. Otero and M. B. Goldring, Cells of the synovium in rheumatoid arthritis. Chondrocytes, vol.9, p.220, 2007.

J. C. Shanahan and W. St-clair, Tumor necrosis factor-alpha blockade: a novel therapy for rheumatic disease, Clin Immunol, vol.103, pp.231-242, 2002.

M. Feldmann and R. N. Maini, Anti-TNF alpha therapy of rheumatoid arthritis: what have we learned?, Annu Rev Immunol, vol.19, pp.163-196, 2001.

A. J. Fosang, K. Last, and R. A. Maciewicz, Aggrecan is degraded by matrix metalloproteinases in human arthritis. Evidence that matrix metalloproteinase and aggrecanase activities can be independent, J Clin Invest, vol.98, pp.2292-2299, 1996.

C. Kiani, L. Chen, Y. J. Wu, A. J. Yee, and B. B. Yang, Structure and function of aggrecan, Cell Res, vol.12, pp.19-32, 2002.

T. E. Hardingham and A. J. Fosang, The structure of aggrecan and its turnover in cartilage, J Rheumatol Suppl, vol.43, pp.86-90, 1995.

R. V. Iozzo and A. D. Murdoch, Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function, FASEB J, vol.10, pp.598-614, 1996.

T. Ishikawa, F. Nishigaki, S. Christgau, T. Noto, J. Mo et al., Cartilage destruction in collagen induced arthritis assessed with a new biochemical marker for collagen type II C-telopeptide fragments, J Rheumatol, vol.31, pp.1174-1179, 2004.

B. C. Sondergaard, K. Henriksen, H. Wulf, S. Oestergaard, U. Schurigt et al., Relative contribution of matrix metalloprotease and cysteine protease activities to cytokine-stimulated articular cartilage degradation, Osteoarthritis Cartilage, vol.14, pp.738-748, 2006.

A. J. Fosang, K. Last, H. Stanton, D. B. Weeks, I. K. Campbell et al., Generation and novel distribution of matrix metalloproteinase-derived aggrecan fragments in porcine cartilage explants, J Biol Chem, vol.275, pp.33027-33037, 2000.

E. U. Sumer, B. C. Sondergaard, J. C. Rousseau, P. D. Delmas, A. J. Fosang et al., MMP and non-MMP-mediated release of aggrecan and its fragments from articular cartilage: a comparative study of three different aggrecan and glycosaminoglycan assays, Osteoarthritis Cartilage, vol.15, pp.212-221, 2007.

D. L. Scott and D. A. Houssien, Clinical and laboratory assessments in rheumatoid arthritis and osteoarthritis, Br J Rheumatol, vol.35, pp.6-9, 1996.

P. Garnero, X. Ayral, J. C. Rousseau, S. Christgau, L. J. Sandell et al., Uncoupling of type II collagen synthesis and degradation predicts progression of joint damage in patients with knee osteoarthritis, Arthritis Rheum, vol.46, pp.2613-2624, 2002.

P. Ravaud, B. Giraudeau, G. R. Auleley, J. L. Drape, B. Rousselin et al., Variability in knee radiographing: implication for definition of radiological progression in medial knee osteoarthritis, Ann Rheum Dis, vol.57, pp.624-629, 1998.

A. B. Hassell, M. J. Davis, P. D. Fowler, S. Clarke, J. Fisher et al., The relationship between serial measures of disease activity and outcome in rheumatoid arthritis, Q J Med, vol.86, pp.601-607, 1993.

M. J. Plant, A. L. Williams, M. M. O'sullivan, P. A. Lewis, E. C. Coles et al., Relationship between time-integrated C-reactive protein levels and radiologic progression in patients with rheumatoid arthritis, Arthritis Rheum, vol.43, pp.1473-1477, 2000.

M. D. Posthumus, P. C. Limburg, J. Westra, M. A. Van-leeuwen, and M. H. Van-rijswijk, Serum matrix metalloproteinase 3 levels in comparison to C-reactive protein in periods with and without progression of radiological damage in patients with early rheumatoid arthritis, Clin Exp Rheumatol, vol.21, pp.465-472, 2003.

H. Yamanaka, Y. Matsuda, M. Tanaka, W. Sendo, H. Nakajima et al., Serum matrix metalloproteinase 3 as a predictor of the degree of joint destruction during the six months after measurement, in patients with early rheumatoid arthritis, Arthritis Rheum, vol.43, pp.852-858, 2000.

P. Garnero, J. C. Rousseau, and P. D. Delmas, Molecular basis and clinical use of biochemical markers of bone, cartilage, and synovium in joint diseases, Arthritis Rheum, vol.43, pp.953-968, 2000.

J. S. Johansen, B. Baslund, C. Garbarsch, M. Hansen, M. Stoltenberg et al., YKL-40 in giant cells and macrophages from patients with giant cell arteritis, Arthritis Rheum, vol.42, pp.2624-2630, 1999.

H. K. Genant, Methods of assessing radiographic change in rheumatoid arthritis, Am J Med, vol.75, pp.35-47, 1983.

T. Aigner and L. Mckenna, Molecular pathology and pathobiology of osteoarthritic cartilage, Cell Mol Life Sci, vol.59, pp.5-18, 2002.

M. A. Pratta, J. L. Su, M. A. Leesnitzer, A. Struglics, S. Larsson et al., Development and characterization of a highly specific and sensitive sandwich ELISA for detection of aggrecanase-generated aggrecan fragments, Osteoarthritis Cartilage, vol.14, pp.702-713, 2006.

W. T. Wu, C. N. Chen, C. I. Lin, J. H. Chen, and H. Lee, Lysophospholipids enhance matrix metalloproteinase-2 expression in human endothelial cells, p.400

M. A. Karsdal, E. U. Sumer, H. Wulf, S. H. Madsen, C. Christiansen et al., Induction of increased cAMP levels in articular chondrocytes blocks matrix metalloproteinase-mediated cartilage degradation, but not aggrecanase-mediated cartilage degradation, Arthritis Rheum, vol.56, pp.1549-1558, 2007.

M. Tampoia, V. Brescia, A. Fontana, P. Maggiolini, G. Lapadula et al., Anti-cyclic citrullinated peptide autoantibodies measured by an automated enzyme immunoassay: analytical performance and clinical correlations, Clin Chim Acta, vol.355, pp.137-144, 2005.

L. A. Flugge, L. A. Miller-deist, and P. A. Petillo, Towards a molecular understanding of arthritis, Chem Biol, vol.6, pp.157-166, 1999.

M. B. Goldring, The role of cytokines as inflammatory mediators in osteoarthritis: lessons from animal models, Connect Tissue Res, vol.40, pp.1-11, 1999.

J. D. Sandy, C. R. Flannery, P. J. Neame, and L. S. Lohmander, The structure of aggrecan fragments in human synovial fluid. Evidence for the involvement in osteoarthritis of a novel proteinase which cleaves the Glu 373-Ala 374 bond of the interglobular domain, J Clin Invest, vol.89, pp.1512-1516, 1992.

A. M. Malfait, R. Q. Liu, K. Ijiri, S. Komiya, and M. D. Tortorella, Inhibition of ADAM-TS4 and ADAM-TS5 prevents aggrecan degradation in osteoarthritic cartilage, J Biol Chem, vol.277, pp.22201-22208, 2002.

A. Struglics, S. Larsson, M. A. Pratta, S. Kumar, M. W. Lark et al., Human osteoarthritis synovial fluid and joint cartilage contain both aggrecanase-and matrix metalloproteinase-generated aggrecan fragments, Osteoarthritis Cartilage, vol.14, pp.101-113, 2006.

C. B. Little, C. R. Flannery, C. E. Hughes, J. S. Mort, P. J. Roughley et al., Aggrecanase versus matrix metalloproteinases in the catabolism of the interglobular domain of aggrecan in vitro, Biochem J, vol.344, pp.61-68, 1999.

R. Sztrolovics, R. J. White, P. J. Roughley, and J. S. Mort, The mechanism of aggrecan release from cartilage differs with tissue origin and the agent used to stimulate catabolism, Biochem J, vol.362, pp.465-472, 2002.

P. S. Chockalingam, W. Zeng, E. A. Morris, and C. R. Flannery, Release of hyaluronan and hyaladherins (aggrecan G1 domain and link proteins) from articular cartilage exposed to ADAMTS-4 (aggrecanase 1) or ADAMTS-5 (aggrecanase 2), Arthritis Rheum, vol.50, pp.2839-2848, 2004.

K. Sugimoto, T. Iizawa, H. Harada, K. Yamada, M. Katsumata et al., Cartilage degradation independent of MMP/aggrecanases, Osteoarthritis Cartilage, vol.12, pp.1006-1014, 2004.

A. Zink, J. Listing, C. Klindworth, and H. Zeidler, The national data base of the German Collaborative Arthritis Centres: I. Structure, aims, and patients, Ann Rheum Dis, vol.60, pp.199-206, 2001.