J. S. Balami and A. M. Buchan, Complications of intracerebral haemorrhage, Lancet Neurol, vol.11, pp.101-118, 2012.

L. Pantoni, Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges, Lancet Neurol, vol.9, pp.689-701, 2010.

A. Joutel and F. M. Faraci, Cerebral small vessel disease: insights and opportunities from mouse models of collagen IV-related small vessel disease and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, Stroke, vol.45, pp.1215-1221, 2014.

K. Hara, A. Shiga, T. Fukutake, H. Nozaki, A. Miyashita et al., Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease, N. Engl. J. Med, vol.360, pp.1729-1739, 2009.

E. Verdura, D. Hervéherv´hervé, E. Scharrer, M. M. Amador, L. Guyant-maréchalmar´maréchal et al., Heterozygous HTRA1 mutations are associated with autosomal dominant cerebral small vessel disease, Brain, vol.138, pp.2347-2358, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01987719

E. Verdura, D. Hervéherv´hervé, F. Bergametti, C. Jacquet, T. Morvan et al., Disruption of a miR-29 binding site leading to COL4A1 upregulation causes pontine autosomal dominant microangiopathy with leukoencephalopathy, Ann. Neurol, vol.80, pp.741-753, 2016.

M. Bugiani, S. H. Kevelam, H. S. Bakels, Q. Waisfisz, C. Ceuterick-de-groote et al., Cathepsin A-related arteriopathy with strokes and leukoencephalopathy (CARASAL), Neurology, vol.87, pp.1777-1786, 2016.

H. Chabriat, A. Joutel, M. Dichgans, E. Tournier-lasserve, and M. G. Bousser, Cadasil. Lancet. Neurol, vol.8, pp.643-653, 2009.

J. M. Wardlaw, E. E. Smith, G. J. Biessels, C. Cordonnier, F. Fazekas et al., Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration, Lancet Neurol, vol.12, pp.822-838, 2013.

W. T. Longstreth, T. A. Manolio, A. Arnold, G. L. Burke, N. Bryan et al., Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people, Cardiovasc. Health Study Stroke, vol.27, pp.1274-1282, 1996.

F. E. De-leeuw, J. C. De-groot, E. Achten, M. Oudkerk, L. M. Ramos et al., Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study, J. Neurol. Neurosurg. Psychiatr, vol.70, pp.9-14, 2001.

C. Rosano, L. H. Kuller, H. Chung, A. M. Arnold, W. T. Longstreth et al., Subclinical brain magnetic resonance imaging abnormalities predict physical functional decline in high-functioning older adults, J. Am. Geriatr. Soc, vol.53, pp.649-654, 2005.

O. Godin, C. Tzourio, P. Maillard, B. Mazoyer, and C. Dufouil, Antihypertensive treatment and change in blood pressure are associated with the progression of white matter lesion volumes: the Three-City (3C)-Dijon Magnetic Resonance Imaging Study, Circulation, vol.123, pp.266-273, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01154298

R. Schmidt, C. Enzinger, S. Ropele, H. Schmidt, and F. Fazekas, Progression of cerebral white matter lesions: 6-year results of the Austrian Stroke Prevention Study, Lancet, vol.361, pp.2046-2048, 2003.

S. Debette and H. S. Markus, The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis, BMJ, vol.341, 2010.

R. Schmidt, P. Scheltens, T. Erkinjuntti, L. Pantoni, H. S. Markus et al., White matter lesion progression: a surrogate endpoint for trials in cerebral small-vessel disease, Neurology, vol.63, pp.139-144, 2004.

C. M. Filley and R. D. Fields, White matter and cognition: making the connection, J. Neurophysiol, vol.116, pp.2093-2104, 2016.

K. Nave and H. B. Werner, Myelination of the nervous system: mechanisms and functions, Annu. Rev. Cell Dev. Biol, vol.30, pp.503-533, 2014.

J. S. O'brien, Stability of the myelin membrane, Science, vol.147, pp.1099-1107, 1965.

M. E. Smith and L. F. Eng, The turnover of the lipid components of myelin, J. Am. Oil Chem. Soc, vol.42, pp.1013-1018, 1965.

B. H. Toyama, J. N. Savas, S. K. Park, M. S. Harris, N. T. Ingolia et al., Identification of long-lived proteins reveals exceptional stability of essential cellular structures, Cell, vol.154, pp.971-982, 2013.

W. M-¨-obius, K. Nave, and H. B. Werner, Electron microscopy of myelin: structure preservation by high-pressure freezing, Brain Res, vol.1641, pp.92-100, 2016.

D. E. Bergles and W. D. Richardson, Oligodendrocyte development and plasticity, Cold Spring Harb. Perspect. Biol, vol.8, 2015.

S. Marques, A. Zeisel, S. Codeluppi, D. Van-bruggen, A. Mendanha-falcãofalc?falcão et al., , 2016.

, Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system, Science, vol.352, pp.1326-1329

E. G. Hughes, S. H. Kang, M. Fukaya, and D. E. Bergles, Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain, Nat. Neurosci, vol.16, pp.668-676, 2013.

N. Snaidero, W. M-¨-obius, T. Czopka, L. H. Hekking, C. Mathisen et al., Myelin membrane wrapping of CNS axons by PI(3,4,5)P3-dependent polarized growth at the inner tongue, Cell, vol.156, pp.277-290, 2014.

M. Bakhti, S. Aggarwal, and M. Simons, Myelin architecture: zippering membranes tightly together, Cell. Mol. Life Sci, vol.71, pp.1265-1277, 2014.

S. Aggarwal, L. Yurlova, N. Snaidero, C. Reetz, S. Frey et al., A size barrier limits protein diffusion at the cell surface to generate lipid-rich myelin-membrane sheets, Dev. Cell, vol.21, pp.445-456, 2011.

A. Matsuo, I. Akiguchi, G. C. Lee, E. G. Mcgeer, P. L. Mcgeer et al., Myelin degeneration in multiple system atrophy detected by unique antibodies, Am. J. Pathol, vol.153, pp.735-744, 1998.

M. Weil, W. M-¨-obius, A. Winkler, T. Ruhwedel, C. Wrzos et al., Loss of myelin basic protein function triggers myelin breakdown in models of demyelinating diseases, Cell Rep, vol.16, pp.314-322, 2016.

N. Baumann and D. Pham-dinh, Biology of oligodendrocyte and myelin in the mammalian central nervous system, Physiol. Rev, vol.81, pp.871-927, 2001.

K. M. Young, K. Psachoulia, R. B. Tripathi, S. Dunn, L. Cossell et al., Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling, Neuron, vol.77, pp.873-885, 2013.

E. M. Gibson, D. Purger, C. W. Mount, A. K. Goldstein, G. L. Lin et al., Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain, Science, vol.344, p.1252304, 2014.

J. Liu, K. Dietz, J. M. Deloyht, X. Pedre, D. Kelkar et al., Impaired adult myelination in the prefrontal cortex of socially isolated mice, Nat. Neurosci, vol.15, pp.1621-1623, 2012.

M. Makinodan, K. M. Rosen, S. Ito, and G. Corfas, A critical period for social experience-dependent oligodendrocyte maturation and myelination, Science, vol.337, pp.1357-1360, 2012.

C. Lebel, M. Gee, R. Camicioli, M. Wieler, W. Martin et al., Diffusion tensor imaging of white matter tract evolution over the lifespan, Neuroimage, vol.60, pp.340-352, 2012.

K. M. Welker and A. Patton, Assessment of normal myelination with magnetic resonance imaging, Semin. Neurol, vol.32, pp.15-28, 2012.

M. S. Yeung, S. Zdunek, O. Bergmann, S. Bernard, M. Salehpour et al., Dynamics of oligodendrocyte generation and myelination in the human brain, Cell, vol.159, pp.766-774, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01092151

A. Peters and C. Sethares, Oligodendrocytes, their progenitors and other neuroglial cells in the aging primate cerebral cortex, Cereb. Cortex, vol.14, pp.995-1007, 2004.

A. Peters, The effects of normal aging on myelin and nerve fibers: a review, J. Neurocytol, vol.31, pp.581-593, 2002.

S. Safaiyan, N. Kannaiyan, N. Snaidero, S. Brioschi, K. Biber et al., Age-related myelin degradation burdens the clearance function of microglia during aging, Nat. Neurosci, vol.19, pp.995-998, 2016.

I. Griffiths, M. Klugmann, T. Anderson, D. Yool, C. Thomson et al., Axonal swellings and degeneration in mice lacking the major proteolipid of myelin, Science, vol.280, pp.1610-1613, 1998.

C. Lappe-siefke, S. Goebbels, M. Gravel, E. Nicksch, J. Lee et al., Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination, Nat. Genet, vol.33, pp.366-374, 2003.

, Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity, Nature, vol.485, pp.517-521

Y. Lee, B. M. Morrison, Y. Li, S. Lengacher, M. H. Farah et al., Oligodendroglia metabolically support axons and contribute to neurodegeneration, Nature, vol.487, pp.443-448, 2012.

A. S. Saab, I. D. Tzvetavona, A. Trevisiol, S. Baltan, P. Dibaj et al., Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism, Neuron, vol.91, pp.119-132, 2016.

J. E. Rash, Molecular disruptions of the panglial syncytium block potassium siphoning and axonal saltatory conduction: pertinence to neuromyelitis optica and other demyelinating diseases of the central nervous system, Neuroscience, vol.168, pp.982-1008, 2010.

D. M. Menichella, M. Majdan, R. Awatramani, D. A. Goodenough, E. Sirkowski et al., Genetic and physiological evidence that oligodendrocyte gap junctions contribute to spatial buffering of potassium released during neuronal activity, Lancet Neurol, vol.26, pp.973-985, 2006.

C. Depienne, M. Bugiani, C. Dupuits, D. Galanaud, V. Touitou et al., Brain white matter oedema due to ClC-2 chloride channel deficiency: an observational analytical study, Lancet Neurol, vol.12, pp.659-668, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00842764

H. Nonaka, M. Akima, T. Hatori, T. Nagayama, Z. Zhang et al., Microvasculature of the human cerebral white matter: arteries of the deep white matter, Neuropathology, vol.23, pp.111-118, 2003.

D. M. Moody, M. A. Bell, and V. R. Challa, Features of the cerebral vascular pattern that predict vulnerability to perfusion or oxygenation deficiency: an anatomic study, Am. J. Neuroradiol, vol.11, pp.431-439, 1990.

H. Nonaka, M. Akima, T. Hatori, T. Nagayama, Z. Zhang et al., The microvasculature of the cerebral white matter: arteries of the subcortical white matter, J. Neuropathol. Exp. Neurol, vol.62, pp.154-161, 2003.

L. Sokoloff, M. Reivich, C. Kennedy, M. H. Des-rosiers, C. S. Patlak et al., The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat, J. Neurochem, vol.28, pp.897-916, 1977.

J. J. Harris and D. Attwell, The energetics of CNS white matter, J. Neurosci, vol.32, pp.356-371, 2012.

L. Pantoni, F. Fierini, and A. Poggesi, Impact of cerebral white matter changes on functionality in older adults: an overview of the LADIS Study results and future directions, Geriatr. Gerontol. Int, vol.15, issue.1, pp.10-16, 2015.

O. Godin, C. Dufouil, P. Maillard, N. Delcroix, B. Mazoyer et al., White matter lesions as a predictor of depression in the elderly: the 3C-Dijon study, Biol. Psychiatry, vol.63, pp.663-669, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00175779

S. Benisty, S. Reyes, O. Godin, D. Hervéherv´hervé, N. Zieren et al., White-matter lesions without lacunar infarcts in CADASIL, J. Alzheimers Dis, vol.29, pp.903-911, 2012.

E. Jouvent, S. Reyes, F. De-guio, and H. Chabriat, Reaction time is a marker of early cognitive and behavioral alterations in pure cerebral small vessel disease, J. Alzheimers Dis, vol.47, pp.413-419, 2015.

R. Schmidt, H. Schmidt, J. Haybaeck, M. Loitfelder, S. Weis et al., Heterogeneity in age-related white matter changes, Acta Neuropathol, vol.122, pp.171-185, 2011.

D. Hervéherv´hervé, H. Chabriat, M. Rigal, M. Dalloz, A. Kawkabani-marchini et al., A novel hereditary extensive vascular leukoencephalopathy mapping to chromosome 20q13, Neurology, vol.79, pp.2283-2287, 2012.

X. Ding, C. Hagel, E. B. Ringelstein, S. Buchheit, H. Zeumer et al., MRI features of pontine autosomal dominant microangiopathy and leukoencephalopathy (PADMAL), J. Neuroimaging, vol.20, pp.134-140, 2010.

H. Chabriat, S. Pappata, C. Poupon, C. A. Clark, K. Vahedi et al., Clinical severity in CADASIL related to ultrastructural damage in white matter: in vivo study with diffusion tensor MRI, Stroke, vol.30, pp.2637-2643, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00349907

N. Molko, S. Pappata, J. F. Mangin, F. Poupon, D. Lebihan et al., Monitoring disease progression in CADASIL with diffusion magnetic resonance imaging: a study with whole brain histogram analysis, Stroke, vol.33, pp.2902-2908, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00349703

M. Duering, B. Gesierich, S. Seiler, L. Pirpamer, M. Gonik et al., Strategic white matter tracts for processing speed deficits in age-related small vessel disease, Neurology, vol.82, pp.1946-1950, 2014.

R. Barker, D. Wellington, M. M. Esiri, and S. Love, Assessing white matter ischemic damage in dementia patients by measurement of myelin proteins, J. Cereb. Blood Flow Metab, vol.33, pp.1050-1057, 2013.

L. J. Craggs, Y. Yamamoto, V. Deramecourt, and R. N. Kalaria, Microvascular pathology and morphometrics of sporadic and hereditary small vessel diseases of the brain, Brain Pathol, vol.24, pp.495-509, 2014.

A. Chen, R. O. Akinyemi, Y. Hase, M. J. Firbank, M. N. Ndung'u et al., Frontal white matter hyperintensities, clasmatodendrosis and gliovascular abnormalities in ageing and post-stroke dementia, Brain, vol.139, pp.242-258, 2016.

A. A. Gouw, A. Seewann, W. M. Van-der-flier, F. Barkhof, A. M. Rozemuller et al., Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations, J. Neurol. Neurosurg. Psychiatr, vol.82, pp.126-135, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00584605

A. Pfefferbaum, E. V. Sullivan, E. Adalsteinsson, T. Garrick, and C. Harper, Postmortem MR imaging of formalin-fixed human brain, Neuroimage, vol.21, pp.1585-1595, 2004.

S. Haller, E. K-¨-ovari, F. R. Herrmann, V. Cuvinciuc, A. Tomm et al., Do brain T2/FLAIR white matter hyperintensities correspond to myelin loss in normal aging? A radiologic-neuropathologic correlation study, Acta Neuropathol. Commun, vol.1, p.14, 2013.

Y. Yamamoto, M. Ihara, C. Tham, R. W. Low, J. Y. Slade et al., Neuropathological correlates of temporal pole white matter hyperintensities in CADASIL, Stroke, vol.40, 2004.

A. Joutel, M. Monet-lepretre, C. Gosele, C. Baron-menguy, A. Hammes et al., Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease, J. Clin. Invest, vol.120, pp.433-445, 2010.

E. Cognat, S. Cleophax, V. Domenga-denier, A. J. Joutel, H. J. Mutsaerts et al., White matter hyperintensity volume and cerebral perfusion in older individuals with hypertension using arterial spin-labeling, Acta Neuropathol. Commun, vol.2, 2009.

K. Sam, A. P. Crawley, J. Poublanc, J. Conklin, O. Sobczyk et al., Vascular dysfunction in leukoaraiosis, Am. J. Neuroradiol, vol.37, pp.2258-2264, 2016.

Y. Shi, M. J. Thrippleton, S. D. Makin, I. Marshall, M. I. Geerlings et al., Cerebral blood flow in small vessel disease: a systematic review and meta-analysis, J. Cereb. Blood Flow Metab, vol.36, pp.1653-1667, 2016.

H. Chabriat, S. Pappata, L. Ostergaard, C. A. Clark, M. Pachot-clouard et al., Cerebral hemodynamics in CADASIL before and after acetazolamide challenge assessed with MRI bolus tracking, Stroke, vol.31, pp.1904-1912, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00349831

M. Bernbaum, B. K. Menon, G. Fick, E. E. Smith, M. Goyal et al., Reduced blood flow in normal white matter predicts development of leukoaraiosis, J. Cereb. Blood Flow Metab, vol.35, pp.0-16, 2015.

P. H. Van-der-veen, M. Muller, K. L. Vincken, J. Hendrikse, W. P. Mali et al., Longitudinal relationship between cerebral small-vessel disease and cerebral blood flow: the second manifestations of arterial disease-magnetic resonance study, Stroke, vol.46, pp.1233-1238, 2015.

M. Shibata, R. Ohtani, M. Ihara, and H. Tomimoto, White matter lesions and glial activation in a novel mouse model of chronic cerebral hypoperfusion, Stroke, vol.35, pp.2598-2603, 2004.

Y. Hattori, J. Enmi, S. Iguchi, S. Saito, Y. Yamamoto et al., Substantial reduction of parenchymal cerebral blood flow in mice with bilateral common carotid artery stenosis, Sci. Rep, vol.6, p.32179, 2016.

K. Nakaji, M. Ihara, C. Takahashi, S. Itohara, M. Noda et al., Matrix metalloproteinase-2 plays a critical role in the pathogenesis of white matter lesions after chronic cerebral hypoperfusion in rodents, Stroke, vol.37, pp.2816-2823, 2006.

C. Capone, E. Cognat, L. Ghezali, C. Baron-menguy, D. Aubin et al., Reducing Timp3 or vitronectin ameliorates disease manifestations in CADASIL mice, Ann. Neurol, vol.79, pp.387-403, 2016.

M. J. Cipolla, The Cerebral Circulation, Morgan & Claypool Life Sciences, 2009.

K. Sam, J. Conklin, K. R. Holmes, O. Sobczyk, J. Poublanc et al., Impaired dynamic cerebrovascular response to hypercapnia predicts development of white matter hyperintensities, Neuroimage Clin, vol.11, pp.796-801, 2016.

K. Sam, A. P. Crawley, J. Conklin, J. Poublanc, O. Sobczyk et al., Development of white matter hyperintensity is preceded by reduced cerebrovascular reactivity, Ann. Neurol, vol.80, pp.277-285, 2016.

M. K. Liem, S. A. Lesnik-oberstein, J. Haan, R. Boom, M. D. Ferrari et al., Cerebrovascular reactivity is a main determinant of white matter hyperintensity progression in CADASIL, Am. J. Neuroradiol, vol.30, pp.1244-1247, 2009.

C. Iadecola and R. L. Davisson, Hypertension and cerebrovascular dysfunction, Cell Metab, vol.7, pp.476-484, 2008.

P. Toth, S. Tarantini, A. Csiszar, and Z. I. Ungvari, Functional vascular contributions to cognitive impairment and dementia (VCID): mechanisms and consequences of cerebral microvascular dysfunction in aging, Am. J. Physiol. Heart Circ. Physiol, vol.312, pp.1-20, 2017.

M. Monet-leprêtrelepr?leprêtre, I. Haddad, C. Baron-menguy, M. Fouillot-panchal, M. Riani et al., Abnormal recruitment of extracellular matrix proteins by excess Notch3 ECD: a new pathomechanism in CADASIL, Brain, vol.136, pp.1830-1845, 2013.

Z. Zhao, A. R. Nelson, C. Betsholtz, and B. V. Zlokovic, Establishment and dysfunction of the blood-brain barrier, Cell, vol.163, pp.1064-1078, 2015.

A. J. Farrall and J. M. Wardlaw, Blood-brain barrier: ageing and microvascular disease-systematic review and meta-analysis, Neurobiol. Aging, vol.30, pp.337-352, 2009.

I. Akiguchi, H. Tomimoto, T. Suenaga, H. Wakita, and H. Budka, Blood-brain barrier dysfunction in Binswanger's disease; an immunohistochemical study, Acta Neuropathol, vol.95, pp.78-84, 1998.

I. Alafuzoff, R. Adolfsson, I. Grundke-iqbal, and B. Winblad, Perivascular deposits of serum proteins in cerebral cortex in vascular dementia, Acta Neuropathol, vol.66, pp.292-298, 1985.

S. Tikka, M. Baumann, M. Siitonen, P. Pasanen, M. P-¨-oyhönenoyh¨oyhönen et al., CADASIL and CARASIL. Brain Pathol, vol.24, pp.525-544, 2014.

A. K. Heye, M. J. Thrippleton, P. A. Armitage, C. Valdésvald´valdés-hernándezhern´hernández-mdel, S. D. Makin et al., Tracer kinetic modelling for DCE-MRI quantification of subtle blood-brain barrier permeability, Neuroimage, vol.125, pp.446-455, 2016.

R. Topakian, T. R. Barrick, F. A. Howe, and H. S. Markus, Blood-brain barrier permeability is increased in normal-appearing white matter in patients with lacunar stroke and leucoaraiosis, J. Neurol. Neurosurg. Psychiatr, vol.81, pp.192-197, 2010.

B. N. Huisa, A. Caprihan, J. Thompson, J. Prestopnik, C. R. Qualls et al., Long-term blood-brain barrier permeability changes in Binswanger disease, Stroke, vol.46, pp.2413-2418, 2015.

S. Muñozmu?muñoz-maniega, F. M. Chappell, M. C. Valdésvald´valdés-hernándezhern´hernández, P. A. Armitage, S. D. Makin et al., Integrity of normal-appearing white matter: influence of age, visible lesion burden and hypertension in patients with small-vessel disease, J. Cereb. Blood Flow Metab. Mar, vol.1, 2016.

E. L. Bailey, C. Smith, C. L. Sudlow, and J. M. Wardlaw, Is the spontaneously hypertensive stroke prone rat a pertinent model of sub cortical ischemic stroke? A systematic review, Int. J. Stroke, vol.6, pp.434-444, 2011.

K. Fredriksson, R. N. Auer, H. Kalimo, C. Nordborg, Y. Olsson et al., Cerebrovascular lesions in stroke-prone spontaneously hypertensive rats, Acta Neuropathol, vol.68, pp.284-294, 1985.

K. Fredriksson, H. Kalimo, C. Nordborg, Y. Olsson, and B. B. Johansson, Cyst formation and glial response in the brain lesions of stroke-prone spontaneously hypertensive rats, Acta Neuropathol, vol.76, pp.441-450, 1988.

H. Tsai, J. Niu, R. Munji, D. Davalos, J. Chang et al., Oligodendrocyte precursors migrate along vasculature in the developing nervous system, Science, vol.351, pp.379-384, 2016.

T. Maki, Y. Takahashi, N. Miyamoto, A. C. Liang, M. Ihara et al., Adrenomedullin promotes differentiation of oligodendrocyte precursor cells into myelin-basic-protein expressing oligodendrocytes under pathological conditions in vitro, Stem Cell Res, vol.15, pp.68-74, 2015.

T. J. Yuen, J. C. Silbereis, A. Griveau, S. M. Chang, R. Daneman et al., Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis, Cell, vol.158, pp.383-396, 2014.

K. Arai and E. H. Lo, An oligovascular niche: cerebral endothelial cells promote the survival and proliferation of oligodendrocyte precursor cells, J. Neurosci, vol.29, pp.4351-4355, 2009.

W. Baron, H. Colognato, C. Ffrench-constant, and C. Ffrench-constant, Integrin-growth factor interactions as regulators of oligodendroglial development and function, CrossRef Clinical Science, vol.49, p.0, 2005.

A. Joutel, I. Haddad, J. Ratelade, and M. T. Nelson, Perturbations of the cerebrovascular matrisome: a convergent mechanism in small vessel disease of the brain?, J. Cereb. Blood Flow Metab, vol.36, pp.143-157, 2016.

J. J. Iliff, M. Wang, Y. Liao, B. A. Plogg, W. Peng et al., A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid ?, Sci. Transl, 2012.

J. J. Iliff, M. Wang, D. M. Zeppenfeld, A. Venkataraman, B. A. Plog et al., Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain, J. Neurosci, vol.33, pp.18190-18199, 2013.

B. T. Kress, J. J. Iliff, M. Xia, M. Wang, H. S. Wei et al., Impairment of paravascular clearance pathways in the aging brain, The Author(s), vol.76, pp.845-861, 2014.