P. Aldred, E. Hollox, and J. Armour, Copy number polymorphism and expression level variation of the human alpha-defensin genes DEFA1 and DEFA3, Hum Mol Genet, vol.14, issue.14, pp.2045-52, 2005.

T. Anderson, An introduction to multivariate statistical analysis, Series in Probability and Statistics, 1958.

I. Auger and C. Lawrence, Algorithms for the optimal identification of segment neighborhoods, Bull Math Biol, vol.51, issue.1, pp.39-54, 1989.

W. A. Bickmore, The Spatial Organization of the Human Genome, Annual Review of Genomics and Human Genetics, vol.14, pp.67-84, 2013.

J. Bien and R. J. Tibshirani, Sparse estimation of a covariance matrix, Biometrika, vol.98, issue.4, pp.807-827, 2011.

S. J. Clark, Action at a distance: epigenetic silencing of large chromosomal regions in carcinogenesis, Hum Mol Genet, vol.16, issue.1, pp.88-95, 2007.

A. Cleynen, S. Dudoit, and S. Robin, Comparing segmentation methods for genome annotation based on rna-seq data, J Agric Biol Environ Stat, vol.19, issue.1, pp.101-119, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01197620

A. Cleynen, M. Koskas, E. Lebarbier, G. Rigaill, and S. Robin, Segmentor3IsBack: an R package for the fast and exact segmentation of Seq-data, Algorithms Mol Biol, vol.9, issue.1, pp.1-11, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01587007

B. Cohen, R. Mitra, J. Hughes, and G. Church, A computational analysis of whole-genome expression data reveals chromosomal domains of gene expression, Nat Genet, vol.26, issue.2, pp.183-189, 2000.

A. Coppe, G. A. Danieli, and S. Bortoluzzi, REEF: searching REgionally Enriched Features in genomes, BMC Bioinforma, vol.7, issue.1, 2006.

S. De and M. M. Babu, Genomic neighbourhood and the regulation of gene expression, Curr Opin Cell Biol, vol.22, issue.3, pp.326-359, 2010.

A. J. Dobson, An introduction to generalized linear models, 1990.

T. Dottorini, P. Palladino, N. Senin, T. Persampieri, R. Spaccapelo et al., CluGene: A Bioinformatics Framework for the Identification of Co-Localized, Co-Expressed and Co-Regulated Genes Aimed at the Investigation of Transcriptional Regulatory Networks from High-Throughput Expression Data, PLOS ONE, vol.8, issue.6, p.66, 0196.

J. Frigola, J. Song, C. Stirzaker, R. Hinshelwood, M. Peinado et al., Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band, Nat Genet, vol.38, issue.5, pp.540-549, 2006.

J. M. Hilbe, Negative binomial regression, 2011.

W. Lai, M. Johnson, R. Kucherlapati, and P. Park, Comparative analysis of algorithms for identifying amplifications and deletions in array CGH data, Bioinformatics, vol.21, issue.19, pp.3763-70, 2005.

M. Lavielle, Using penalized contrasts for the change-point problem. Signal Process, vol.85, pp.1501-1511, 2005.
URL : https://hal.archives-ouvertes.fr/inria-00070662

M. Lavielle and G. Teyssière, Detection of multiple change-points in multivariate time series, Lith Math J, vol.46, issue.3, pp.287-306, 2006.

G. G. Leday, A. W. Van-der-vaart, W. N. Van-wieringen, and M. A. Van-de-wiel, Modeling association between DNA copy number and gene expression with constrained piecewise linear regression splines, Ann Appl Stat, vol.7, issue.2, pp.823-868, 2013.

D. G. Lemay, W. F. Martin, A. S. Hinrichs, M. Rijnkels, J. B. German et al., G-NEST: a gene neighborhood scoring tool to identify co-conserved, co-expressed genes, BMC Bioinforma, vol.13, pp.1-17, 2012.

E. Levina, A. Rothman, and J. Zhu, Sparse estimation of large covariance matrices via a nested lasso penalty, Annals of Applied Statistics, vol.2, issue.1, pp.245-63, 2008.

C. Lu, J. Feng, Z. Lin, and S. Yan, Correlation Adaptive Subspace Segmentation by Trace Lasso, 2013 IEEE International Conference on Computer Vision (ICCV)

, NICTA; FACE++; Natl Robot Engn Ctr; Google; Disney Res; nVIDIA

R. Bbn-technologies;-facebook;-adobe;-kitware, ;. Omron, and . Int, IEEE International Conference on Computer Vision (ICCV), pp.1345-52, 2013.

R. X. Menezes, M. Boetzer, M. Sieswerda, G. Van-ommen, and J. M. Boer, Integrated analysis of DNA copy number and gene expression microarray data using gene sets, BMC Bioinforma, vol.10, pp.1-15, 2009.

B. Nilsson, M. Johansson, A. Heyden, S. Nelander, and T. Fioretos, An improved method for detecting and delineating genomic regions with altered gene expression in cancer, Genome Biol, vol.9, issue.1, pp.1-15, 2008.

F. Picard, S. Robin, M. Lavielle, C. Vaisse, and J. J. Daudin, A statistical approach for array CGH data analysis, BMC Bioinforma, vol.6, pp.1-14, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00427846

F. Picard, E. Lebarbier, M. Hoebeke, G. Rigaill, B. Thiam et al., Joint segmentation,calling, and normalization of multiple CGH profiles, Biostatistics, vol.12, issue.3, pp.413-441, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01019859

S. Rebouissou, I. Bernard-pierrot, A. De-reynies, M. L. Lepage, C. Krucker et al., EGFR as a potential therapeutic target for a subset of muscle-invasive bladder cancers presenting a basal-like phenotype, Sci Transl Med, vol.6, issue.244, pp.244-91, 2014.

F. Reyal, N. Stransky, I. Bernard-pierrot, A. Vincent-salomon, Y. De-rycke et al., Visualizing chromosomes as transcriptome correlation maps: Evidence of chromosomal domains containing co-expressed genes -A study of 130 invasive ductal breast carcinomas, Cancer Res, vol.65, issue.4, pp.1376-83, 2005.

J. Sebat, B. Lakshmi, J. Troge, A. J. Young, J. Lundin et al., Large-scale copy number polymorphism in the human genome, Science, vol.305, issue.5683, pp.525-533, 2004.

M. Seifert, K. Abou-el-ardat, B. Friedrich, B. Klink, and A. Deutsch, Autoregressive Higher-Order Hidden Markov Models: Exploiting Local Chromosomal Dependencies in the Analysis of Tumor Expression Profiles, PLOS ONE, vol.9, issue.6, pp.1-16, 2014.

R. Simon, J. Richter, U. Wagner, A. Fijan, J. Bruderer et al., High-throughput tissue microarray analysis of 3p25 (raf1) and 8p12 (fgfr1) copy number alterations in urinary bladder cancer, Cancer Res, vol.61, issue.11, pp.4514-4523, 2001.

P. T. Spellman and G. M. Rubin, Evidence for large domains of similarly expressed genes in the drosophila genome, J Biol, vol.1, issue.1, pp.1-8, 2002.

D. Sproul, N. Gilbert, and W. Bickmore, The role of chromatin structure in regulating the expression of clustered genes, Nat Rev Genet, vol.6, issue.10, pp.775-81, 2005.

N. Stransky, C. Vallot, F. Reyal, I. Bernard-pierrot, S. De-medina et al., Regional copy number-independent deregulation of transcription in cancer, Nat Genet, vol.38, issue.12, pp.1386-96, 2006.

. Tcga, Comprehensive molecular characterization of urothelial bladder carcinoma, Nature, vol.507, issue.7492, pp.315-337, 2014.

R. Tibshirani and P. Wang, Spatial smoothing and hot spot detection for CGH data using the fused lasso, Biostatistics, vol.9, issue.1, pp.18-29, 2008.

C. Vallot, N. Stransky, I. Bernard-pierrot, A. Herault, J. Zucman-rossi et al., A Novel Epigenetic Phenotype Associated With the Most Aggressive Pathway of Bladder Tumor Progression, J Natl Cancer Inst, vol.103, issue.1, pp.47-60, 2011.

W. N. Van-wieringen, J. Berkhof, and M. A. Van-de-wiel, A random coefficients model for regional co-expression associated with DNA copy number, Stat Appl Genet Mol Biol, vol.9, issue.1, 2010.

S. V. Williams, F. M. Platt, C. D. Hurst, J. S. Aveyard, C. F. Taylor et al., High-Resolution Analysis of Genomic Alteration on Chromosome Arm 8p in Urothelial Carcinoma, Genes Chromosomes Cancer, vol.49, issue.7, pp.642-59, 2010.

G. Xiao, C. Reilly, and A. B. Khodursky, Improved Detection of Differentially Expressed Genes Through Incorporation of Gene Locations, Biometrics, vol.65, issue.3, pp.805-819, 2009.

Y. Yi, J. Mirosevich, Y. Shyr, R. Matusik, and A. George, Coupled analysis of gene expression and chromosomal location, Genomics, vol.85, issue.3, pp.401-413, 2005.

Q. Zhang, L. Ding, D. E. Larson, D. C. Koboldt, M. D. Mclellan et al., CMDS: a population-based method for identifying recurrent DNA copy number aberrations in cancer from high-resolution data, Bioinformatics, vol.26, issue.4, pp.464-473, 2010.