, Triton X-100, 150 mM NaCl, 20 mM Tris-HCl, pH 8.1, 0.1% SDS, and 2 mM EDTA), 600 µL of TSE2 buffer (1% Triton X-100, 500 mM NaCl, 20 mM Tris-HCl, pH 8.1, 0.1% SDS, and 2 mM EDTA), and 600 µL of TSE3 buffer (1% NP40, 1% sodium deoxycholate, 250 mM LiCl, and 10 mM Tris-HCl, pH 8.1). Following two washes in TE buffer (10 mM Tris-HCl and 1 mM EDTA), samples were eluted with 200 µL of fresh elution buffer (1% SDS and

, DNA was purified using a High Pure PCR Template Preparation Kit (Roche) and analyzed by Q-PCR. Antibodies used: rabbit polyclonal anti-Myc (Cell Signaling 9402), rabbit polyclonal IgG control isotype (Cell Signaling 39005), or mouse monoclonal anti-GAL4 (Santa Cruz sc-510). The following region was amplified

P. A. Perez-mancera, A. R. Young, and M. Narita, Inside and out: the activities of senescence in cancer, Nat. Rev. Cancer, vol.1, pp.547-558, 2014.

R. H. Te-poele, A. L. Okorokov, L. Jardine, J. Cummings, and S. P. Joel, DNA damage is able to induce senescence in tumor cells in vitro and in vivo, Cancer Res, vol.62, pp.1876-1883, 2002.

F. Rodier, Persistent DNA damage signalling triggers senescenceassociated inflammatory cytokine secretion, Nat. Cell Biol, vol.11, pp.973-979, 2009.

J. P. Coppe, Senescence-associated secretory phenotypes reveal cellnonautonomous functions of oncogenic RAS and the p53 tumor suppressor, PLoS Biol, vol.6, pp.2853-2868, 2008.

T. Kuilman, Oncogene-induced senescence relayed by an interleukindependent inflammatory network, Cell, vol.133, pp.1019-1031, 2008.

J. C. Acosta, A complex secretory program orchestrated by the inflammasome controls paracrine senescence, Nat. Cell Biol, vol.15, pp.978-990, 2013.

A. Lujambio, Non-cell-autonomous tumor suppression by p53, Cell, vol.153, pp.449-460, 2013.

A. Iannello, T. W. Thompson, M. Ardolino, S. W. Lowe, and D. H. Raulet, p53dependent chemokine production by senescent tumor cells supports NKG2D-dependent tumor elimination by natural killer cells, J. Exp. Med, vol.210, pp.2057-2069, 2013.

F. Rodier and J. Campisi, Four faces of cellular senescence, J. Cell Biol, vol.192, pp.547-556, 2011.

J. P. Coppe, K. Kauser, J. Campisi, and C. M. Beausejour, Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence, J. Biol. Chem, vol.281, pp.29568-29574, 2006.

S. Parrinello, J. P. Coppe, A. Krtolica, and J. Campisi, Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation, J. Cell Sci, vol.118, pp.485-496, 2005.

D. J. Baker, Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan, Nature, vol.530, pp.184-189, 2016.

B. G. Childs, D. J. Baker, J. L. Kirkland, J. Campisi, and J. M. Van-deursen, Senescence and apoptosis: dueling or complementary cell fates?, EMBO Rep, vol.15, pp.1139-1153, 2014.

S. De-carne-trecesson, Escape from p21-mediated oncogene-induced senescence leads to cell dedifferentiation and dependence on anti-apoptotic Bcl-xL and MCL1 proteins, J. Biol. Chem, vol.286, pp.12825-12838, 2011.

A. Vigneron, I. B. Roninson, E. Gamelin, and O. Coqueret, Src inhibits adriamycininduced senescence and G2 checkpoint arrest by blocking the induction of p21waf1, Cancer Res, vol.65, pp.8927-8935, 2005.

A. Vetillard, Akt inhibition improves irinotecan treatment and prevents cell emergence by switching the senescence response to apoptosis, Oncotarget, vol.6, pp.43342-43362, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01819855

B. Jonchere, Irinotecan treatment and senescence failure promote the emergence of more transformed and invasive cells that depend on antiapoptotic Mcl-1, Oncotarget, vol.6, pp.409-426, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01396743

S. Ansieau and G. Collin, Senescence versus apoptosis in chemotherapy, Oncotarget, vol.6, pp.4551-4552, 2015.

L. Duff and M. , Regulation of senescence escape by the cdk4-EZH2AP2M1 pathway in response to chemotherapy, Cell Death Dis, vol.9, p.199, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01718563

K. H. Baek, Thrombospondin-1 mediates oncogenic Ras-induced senescence in premalignant lung tumors, J. Clin. Invest, vol.123, pp.4375-4389, 2013.

J. B. Maxhimer, Radioprotection in normal tissue and delayed tumor growth by blockade of CD47 signaling, Sci. Transl. Med, vol.1, pp.3-7, 2009.

A. Vigneron, J. Cherier, B. Barre, E. Gamelin, and O. Coqueret, The cell cycle inhibitor p21waf1 binds to the myc and cdc25A promoters upon DNA damage and induces transcriptional repression, J. Biol. Chem, vol.281, pp.34742-34750, 2006.

T. Abbas and A. Dutta, p21 in cancer: intricate networks and multiple activities, Nat. Rev. Cancer, vol.9, pp.400-414, 2009.

M. Van-de-wetering, Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector, EMBO Rep, vol.4, pp.609-615, 2003.

C. M. Beausejour, Reversal of human cellular senescence: roles of the p53 and p16 pathways, Embo J, vol.22, pp.4212-4222, 2003.

M. Ngo, Antibody therapy targeting CD47 and CD271 effectively suppresses melanoma metastasis in patient-derived xenografts, Cell Rep, vol.16, pp.1701-1716, 2016.

H. Zhao, CD47 promotes tumor invasion and metastasis in non-small cell lung cancer, Sci. Rep, vol.6, p.29719, 2016.

S. Kaur, A function-blocking CD47 antibody suppresses stem cell and EGF signaling in triple-negative breast cancer, Oncotarget, vol.7, pp.10133-10152, 2016.

M. Campone, Prediction of recurrence and survival for triple-negative breast cancer (TNBC) by a protein signature in tissue samples, Mol. Cell Proteom, vol.14, pp.2936-2946, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01820133