S. Sengupta and R. F. Siliciano, Targeting the latent reservoir for HIV-1, Immunity, vol.48, pp.872-895, 2018.

R. Gaudin, Dynamics of HIV-containing compartments in macrophages reveal sequestration of virions and transient surface connections, PLoS ONE, vol.8, p.69450, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01393455

P. Castellano, L. Prevedel, and E. A. Eugenin, HIV-infected macrophages and microglia that survive acute infection become viral reservoirs by a mechanism involving, Bim. Sci. Rep, vol.7, p.12866, 2017.

S. Swingler, A. M. Mann, J. Zhou, C. Swingler, and M. Stevenson, Apoptotic killing of HIV-1-infected macrophages is subverted by the viral envelope glycoprotein, PLoS Pathog, vol.3, pp.1281-1290, 2007.

K. L. Clayton, Resistance of HIV-infected macrophages to CD8 + T lymphocyte-mediated killing drives activation of the immune system, Nat. Immunol, vol.19, pp.475-486, 2018.

D. Hashimoto, Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes, Immunity, vol.38, pp.792-804, 2013.

P. J. Murray and T. A. Wynn, Protective and pathogenic functions of macrophage subsets, Nat. Rev. Immunol, vol.11, pp.723-737, 2011.

P. J. Murray, Macrophage polarization, Annu. Rev. Physiol, vol.79, pp.541-566, 2017.

E. Cassol, L. Cassetta, M. Alfano, and G. Poli, Macrophage polarization and HIV-1 infection, J. Leukoc. Biol, vol.87, pp.599-608, 2010.

J. R. Bailey, Residual human immunodeficiency virus type 1 viremia in some patients on antiretroviral therapy is dominated by a small number of invariant clones rarely found in circulating CD4 + T cells, J. Virol, vol.80, pp.6441-6457, 2006.

A. S. Perelson, Decay characteristics of HIV-1-infected compartments during combination therapy, Nature, vol.387, pp.188-191, 1997.

T. A. Rasmussen, Comparison of HDAC inhibitors in clinical development: effect on HIV production in latently infected cells and T-cell activation, Hum. Vaccin. Immunother, vol.9, pp.993-1001, 2013.

J. B. Honeycutt, Macrophages sustain HIV replication in vivo independently of T cells, J. Clin. Invest, vol.126, pp.1353-1366, 2016.

J. B. Honeycutt, HIV persistence in tissue macrophages of humanized myeloid-only mice during antiretroviral therapy, Nat. Med, vol.23, pp.638-643, 2017.

P. S. Sullivan, L. Salazar, S. Buchbinder, and T. H. Sanchez, Estimating the proportion of HIV transmissions from main sex partners among men who have sex with men in five US cities, AIDS, vol.23, pp.1153-1162, 2009.

Y. Ganor, The adult penile urethra is a novel entry site for HIV-1 that preferentially targets resident urethral macrophages, Mucosal Immunol, vol.6, pp.776-786, 2013.

Y. Ganor, Within 1 h, HIV-1 uses viral synapses to enter efficiently the inner, but not outer, foreskin mucosa and engages Langerhans-T cell conjugates, Mucosal Immunol, vol.3, pp.506-522, 2010.

Z. Zhou, HIV-1 efficient entry in inner foreskin is mediated by elevated CCL5/RANTES that recruits T cells and fuels conjugate formation with Langerhans cells, PLoS Pathog, vol.7, p.1002100, 2011.

M. A. Jensen, Improved coreceptor usage prediction and genotypic monitoring of R5-to-X4 transition by motif analysis of human immunodeficiency virus type 1 env V3 loop sequences, J. Virol, vol.77, pp.13376-13388, 2003.

Y. Sasaki, K. Ohsawa, H. Kanazawa, S. Kohsaka, and Y. Imai, Iba1 is an actin-cross-linking protein in macrophages/microglia, Biochem. Biophys. Res. Commun, vol.286, pp.292-297, 2001.

L. Prevedel, Identification, localization, and quantification of HIV reservoirs using microscopy, Curr. Protoc. Cell Biol, 2018.

G. M. Laird, D. I. Rosenbloom, J. Lai, R. F. Siliciano, and J. D. Siliciano, Measuring the frequency of latent HIV-1 in resting CD4 + T cells using a limiting dilution coculture assay, Methods Mol. Biol, vol.1354, pp.239-253, 2016.

A. Fun, H. P. Mok, M. R. Wills, and A. M. Lever, A highly reproducible quantitative viral outgrowth assay for the measurement of the replicationcompetent latent HIV-1 reservoir, Sci. Rep, vol.7, p.43231, 2017.

A. Sanyal, Novel assay reveals a large, inducible, replication-competent HIV-1 reservoir in resting CD4 + T cells, Nat. Med, vol.23, pp.885-889, 2017.

E. Cassol, L. Cassetta, C. Rizzi, M. Alfano, and G. Poli, M1 and M2a polarization of human monocyte-derived macrophages inhibits HIV-1 replication by distinct mechanisms, J. Immunol, vol.182, pp.6237-6246, 2009.

N. Sharova, C. Swingler, M. Sharkey, and M. Stevenson, Macrophages archive HIV-1 virions for dissemination in trans, EMBO J, vol.24, pp.2481-2489, 2005.

A. Zanin-zhorov, Cutting edge: T cells respond to lipopolysaccharide innately via TLR4 signaling, J. Immunol, vol.179, pp.41-44, 2007.
DOI : 10.4049/jimmunol.179.1.41

URL : http://www.jimmunol.org/content/179/1/41.full.pdf

D. F. Tough, S. Sun, and J. Sprent, T cell stimulation in vivo by lipopolysaccharide (LPS), J. Exp. Med, vol.185, pp.2089-2094, 1997.
DOI : 10.1084/jem.185.12.2089

URL : http://jem.rupress.org/content/185/12/2089.full.pdf

J. Pudney and D. J. Anderson, Expression of toll-like receptors in genital tract tissues from normal and HIV-infected men, Am. J. Reprod. Immunol, vol.65, pp.28-43, 2011.

J. M. Orenstein, Replication of HIV-1 in vivo and in vitro, Ultrastruct. Pathol, vol.31, pp.151-167, 2007.

J. M. Orenstein, M. S. Meltzer, T. Phipps, and H. E. Gendelman, Cytoplasmic assembly and accumulation of human immunodeficiency virus types 1 and 2 in recombinant human colony-stimulating factor-1-treated human monocytes: an ultrastructural study, J. Virol, vol.62, pp.2578-2586, 1988.

A. Mantovani, The chemokine system in diverse forms of macrophage activation and polarization, Trends Immunol, vol.25, pp.677-686, 2004.

A. E. Baxter, Macrophage infection via selective capture of HIV-1infected CD4 + T cells, Cell Host Microbe, vol.16, pp.711-721, 2014.
DOI : 10.1016/j.chom.2014.10.010

URL : https://doi.org/10.1016/j.chom.2014.10.010

N. Calantone, Tissue myeloid cells in SIV-infected primates acquire viral DNA through phagocytosis of infected T cells, Immunity, vol.41, pp.493-502, 2014.

S. R. Dinapoli, Tissue-resident macrophages can contain replicationcompetent virus in antiretroviral-naive, SIV-infected Asian macaques, JCI Insight, vol.2, p.91214, 2017.

N. Chomont, HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation, Nat. Med, vol.15, pp.893-900, 2009.
DOI : 10.1038/nm.1972

URL : http://europepmc.org/articles/pmc2859814?pdf=render

A. Wiegand, Single-cell analysis of HIV-1 transcriptional activity reveals expression of proviruses in expanded clones during ART, Proc. Natl Acad. Sci. USA, vol.114, pp.3659-3668, 2017.

C. R. Avalos, Brain macrophages in simian immunodeficiency virus-infected, antiretroviral-suppressed macaques: a functional latent reservoir, MBio, vol.8, pp.1186-1203, 2017.
DOI : 10.1128/mbio.01186-17

URL : https://doi.org/10.1128/mbio.01186-17

A. J. Kandathil, No recovery of replication-competent HIV-1 from human liver macrophages, J. Clin. Invest, vol.128, pp.4501-4509, 2018.
DOI : 10.1172/jci121678

URL : http://www.jci.org/articles/view/121678/files/pdf

L. Cassetta, M1 polarization of human monocyte-derived macrophages restricts pre and postintegration steps of HIV-1 replication, AIDS, vol.27, pp.1847-1856, 2013.

K. M. Bruner, Defective proviruses rapidly accumulate during acute HIV-1 infection, Nat. Med, vol.22, pp.1043-1049, 2016.
DOI : 10.1038/nm.4156

URL : http://europepmc.org/articles/pmc5014606?pdf=render

Y. C. Ho, Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure, Cell, vol.155, pp.540-551, 2013.

F. Real, A. Sennepin, Y. Ganor, A. Schmitt, and M. Bomsel, Live imaging of HIV-1 transfer across T cell virological synapse to epithelial cells that promotes stromal macrophage infection, Cell Rep, vol.23, pp.1794-1805, 2018.
DOI : 10.1016/j.celrep.2018.04.028

URL : https://doi.org/10.1016/j.celrep.2018.04.028

M. Catalfamo, C. Le-saout, and H. C. Lane, The role of cytokines in the pathogenesis and treatment of HIV infection, Cytokine Growth Factor Rev, vol.23, pp.207-214, 2012.

M. Clerici and G. M. Shearer, A TH1? TH2 switch is a critical step in the etiology of HIV infection, Immunol. Today, vol.14, pp.107-111, 1993.

L. Houzet, G. Matusali, and N. Dejucq-rainsford, Origins of HIV-infected leukocytes and virions in semen, J. Infect. Dis, vol.210, pp.622-630, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01121761

S. R. Galvin and M. S. Cohen, The role of sexually transmitted diseases in HIV transmission, Nat. Rev. Microbiol, vol.2, pp.33-42, 2004.

G. Matusali, Detection of simian immunodeficiency virus in semen, urethra, and male reproductive organs during efficient highly active antiretroviral therapy, J. Virol, vol.89, pp.5772-5787, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01139816

M. J. Dumaurier, S. Gratton, S. Wain-hobson, and R. Cheynier, The majority of human immunodeficiency virus type 1 particles present within splenic germinal centres are produced locally, J. Gen. Virol, vol.86, pp.3369-3373, 2005.

T. W. Chun, Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy, Proc. Natl Acad. Sci. USA, vol.94, pp.13193-13197, 1997.

M. K. Liszewski, J. J. Yu, and U. Doherty, Detecting HIV-1 integration by repetitive-sampling Alu-gag PCR, Methods, vol.47, pp.254-260, 2009.

T. M. Folks, J. Justement, A. Kinter, C. A. Dinarello, and A. S. Fauci, Cytokine-induced expression of HIV-1 in a chronically infected promonocyte cell line, Science, vol.238, pp.800-802, 1987.

C. A. Spina, An in-depth comparison of latent HIV-1 reactivation in multiple cell model systems and resting CD4 + T cells from aviremic patients, PLoS Pathog, vol.9, p.1003834, 2013.

O. Bagasra, S. D. Wright, T. Seshamma, J. W. Oakes, and R. J. Pomerantz, CD14 is involved in control of human immunodeficiency virus type 1 expression in latently infected cells by lipopolysaccharide, Proc. Natl Acad. Sci. USA, vol.89, pp.6285-6289, 1992.

M. Fujihara, Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: roles of the receptor complex, Pharmacol. Ther, vol.100, pp.171-194, 2003.

R. J. Pomerantz, M. B. Feinberg, D. Trono, and D. Baltimore, Lipopolysaccharide is a potent monocyte/macrophage-specific stimulator of human immunodeficiency virus type 1 expression, J. Exp. Med, vol.172, pp.253-261, 1990.

V. M. Hirsch, Induction of AIDS by simian immunodeficiency virus from an African green monkey: species-specific variation in pathogenicity correlates with the extent of in vivo replication, J. Virol, vol.69, pp.955-967, 1995.

H. Salmon, Ex vivo imaging of T cells in murine lymph node slices with widefield and confocal microscopes, J. Vis. Exp, vol.15, p.3054, 2011.

D. W. Cromey, Avoiding twisted pixels: ethical guidelines for the appropriate use and manipulation of scientific digital images, Sci. Eng. Ethics, vol.16, pp.639-667, 2010.

C. A. Dutertre, Pivotal role of M-DC8 + monocytes from viremic HIV-infected patients in TNF? overproduction in response to microbial products, Blood, vol.120, pp.2259-2268, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-02006556

A. Sennepin, NKp44L expression on CD4 + T cells is associated with impaired immunological recovery in HIV-infected patients under highly active antiretroviral therapy, AIDS, vol.27, pp.1857-1866, 2013.

A. Sennepin, The human penis is a genuine immunological effector site, Front. Immunol, vol.8, p.1732, 2017.

, Clinical data of HIV-1-infected cART-suppressed individuals, from whom penile tissues are obtained and used in the study

, Recruitment Urethral tissues were obtained consecutively from healthy and HIV-1-infected cART-suppressed individuals undergoing elective gender assignment surgery at the Saint Louis Hospital in Paris. Tissues were excluded from the study if individuals had clinical history of other sexually-transmitted infections in the 6 months prior to surgery Flow Cytometry Plots Confirm that: The axis labels state the marker and fluorochrome used

, The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers)

, All plots are contour plots with outliers or pseudocolor plots. A numerical value for number of cells or percentage

, Single-cell suspensions were prepared from fresh urethral tissues upon enzymatic digestion using dispase, trypsin and collagenase Instrument Events were acquired on LSRII cytometer or ARIA3 cytometer for sorting Software Data was analyzed with commercially available Kaluza

, Viable cells were then gated based on their forward (FSC-A, size) vs side (SSC-A, granularity) scatter (R1 gate). CD45 high SSC-A low lymphocytes (R2 gate) were then gated out or used to sort and/or analyze T-cell phenotype. Following one step of rare polymorphonuclear (PMN) cells and autofluorescent events exclusion (CD45 /CD16 dot plot), Cell population abundance Macrophages and CD4+ T-cells sorted from urethral single-cell suspensions represented 15% and 25-30%, respectively, with >95% purity determined by CD68 and CD3/CD4 staining Gating strategy

, Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information