Revue Bibliographique des Méthodes de Couplage des Bases de Données : Applications et Perspectives dans le Cas des Données de Santé Publique

Abstract : Record linkage has become a powerful tool for public health, since the rise of medical and administrative database or cohort (Loth, 2015). This process allows matching individual's information obtained from different databases which don't have necessarily a common identifier. Furthermore, if such common identifier exists it could take a long time to obtain the necessary approval to use it. In France, the NIR is the identifier which is the most likely to be an identifier at the national level. However, in order to use the NIR, it is still compulsory to obtain the authorization from the CNIL even after the change of law concerning the modernization of the French Healthcare system. This paper presents a broad set of methods to perform record linkage, in particular the method proposed by Fellegi and Sunter and its extensions. The aim is to give some guidelines to researchers and to introduce some approaches to incorporate uncertainty associated with the linkage in their analysis. Mots-clés : couplage/appariement indirect, bases de données médicales et administratives, réseau bayésien naïf, mo-dèle mixte.
Document type :
Journal articles
Complete list of metadatas

Cited literature [96 references]  Display  Hide  Download

https://www.hal.inserm.fr/inserm-02015573
Contributor : Laurence Camelin <>
Submitted on : Tuesday, February 12, 2019 - 11:44:29 AM
Last modification on : Thursday, April 4, 2019 - 1:24:59 AM
Long-term archiving on : Monday, May 13, 2019 - 2:19:37 PM

File

 Restricted access
To satisfy the distribution rights of the publisher, the document is embargoed until : jamais

Please log in to resquest access to the document

Identifiers

  • HAL Id : inserm-02015573, version 1

Citation

Said Bounebache, Catherine Quantin, Eric Benzenine, Guillaume Obozinski, Grégoire Rey. Revue Bibliographique des Méthodes de Couplage des Bases de Données : Applications et Perspectives dans le Cas des Données de Santé Publique. Journal de la Société Française de Statistique, Société Française de Statistique et Société Mathématique de France, 2018, 159 (3), pp.79-123. ⟨inserm-02015573⟩

Share

Metrics

Record views

73