L. E. French and J. Tschopp, The TRAIL to selective tumor death, Nat. Med, vol.5, pp.146-147, 1999.

H. Walczak, Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo, Nat. Med, vol.5, pp.157-163, 1999.

O. Micheau, S. Shirley, and F. Dufour, Death receptors as targets in cancer, Br. J. Pharmacol, vol.169, pp.1723-1744, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00823459

A. Dubuisson and O. Micheau, Antibodies and derivatives targeting DR4 and DR5 for cancer therapy, Antibodies, vol.6, p.16, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01626582

Y. Leng, Circularly permuted TRAIL plus thalidomide and dexamethasone versus thalidomide and dexamethasone for relapsed/refractory multiple myeloma: a phase 2 study, Cancer Chemother. Pharmacol, vol.79, pp.1141-1149, 2017.

Y. Leng, Phase II open-label study of recombinant circularly permuted TRAIL as a single-agent treatment for relapsed or refractory multiple myeloma, Chin. J. Cancer, vol.35, p.86, 2016.

D. Berg, Enforced covalent trimerization increases the activity of the TNF ligand family members TRAIL and CD95L, Cell Death Differ, vol.14, pp.2021-2034, 2007.

V. Pavet, Multivalent DR5 peptides activate the TRAIL death pathway and exert tumoricidal activity, Cancer Res, vol.70, pp.1101-1110, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00451170

A. B. Zakaria, Nanovectorization of TRAIL with single wall carbon nanotubes enhances tumor cell killing, Nano. Lett, vol.15, pp.891-895, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01113419

J. L. Bodmer, TRAIL receptor-2 signals apoptosis through FADD and caspase-8, Nat. Cell Biol, vol.2, pp.241-243, 2000.

M. Muzio, B. R. Stockwell, H. R. Stennicke, G. S. Salvesen, and V. M. Dixit, An induced proximity model for caspase-8 activation, J. Biol. Chem, vol.273, pp.2926-2930, 1998.

F. Dufour, TRAIL receptor gene editing unveils TRAIL-R1 as a master player of apoptosis induced by TRAIL and ER stress, Oncotarget, vol.8, pp.9974-9985, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01423110

J. D. Graves, Apo2L/TRAIL and the death receptor 5 agonist antibody AMG 655 cooperate to promote receptor clustering and antitumor activity, Cancer Cell, vol.26, pp.177-189, 2014.

X. Piao, TRAIL-receptor 1 IgM antibodies strongly induce apoptosis in human cancer cells in vitro and in vivo, Oncoimmunology, vol.5, p.1131380, 2016.

D. S. Dimitrov and J. D. Marks, Therapeutic antibodies: current state and future trends-is a paradigm change coming soon?, Methods Mol. Biol, vol.525, pp.1-27, 2009.

H. Peng, Mining naive rabbit antibody repertoires by phage display for monoclonal antibodies of therapeutic utility, J. Mol. Biol, vol.429, pp.2954-2973, 2017.

H. Shim, Therapeutic antibodies by phage display, Curr. Pharm. Des, vol.22, pp.6538-6559, 2016.

D. H. Yang, DNA versus protein immunisation for production of monoclonal antibodies against Choristoneura fumiferana ecdysone receptor (CfEcR), Vaccine, vol.24, pp.3115-3126, 2006.

M. K. Chow, The REFOLD database: a tool for the optimization of protein expression and refolding, Nucleic Acids Res, vol.34, pp.207-212, 2006.

C. Zhang, Potent monoclonal antibodies against Clostridium difficile toxin A elicited by DNA immunization, Hum. Vaccin. Immunother, vol.9, pp.2157-2164, 2013.

G. Acsadi, Human dystrophin expression in mdx mice after intramuscular injection of DNA constructs, Nature, vol.352, pp.815-818, 1991.

E. G. Nabel, G. Plautz, and G. J. Nabel, Site-specific gene expression in vivo by direct gene transfer into the arterial wall, Science, vol.249, pp.1285-1288, 1990.

J. B. Ulmer, Heterologous protection against influenza by injection of DNA encoding a viral protein, Science, vol.259, pp.1745-1749, 1993.

D. C. Tang, M. Devit, and S. A. Johnston, Genetic immunization is a simple method for eliciting an immune response, Nature, vol.356, pp.152-154, 1992.

Y. Ni, A rapid and simple approach to preparation of monoclonal antibody based on DNA immunization, Cell Mol. Immunol, vol.1, pp.295-299, 2004.

P. Schneider, Production of recombinant TRAIL and TRAIL receptor: Fc chimeric proteins, Methods Enzymol, vol.322, pp.325-345, 2000.

N. Lalaoui, TRAIL-R4 promotes tumor growth and resistance to apoptosis in cervical carcinoma HeLa cells through AKT, PLoS ONE, vol.6, p.19679, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00590415

H. Niwa, K. Yamamura, and J. Miyazaki, Efficient selection for high-expression transfectants with a novel eukaryotic vector, Gene, vol.108, pp.193-199, 1991.

F. Dufour, N-glycosylation of mouse TRAIL-R and human TRAIL-R1 enhances TRAIL-induced death, Cell Death Differ, vol.24, pp.500-510, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01467849

M. T. Dimanche-boitrel, Confluence-dependent resistance in human colon cancer cells: role of reduced drug accumulation and low intrinsic chemosensitivity of resting cells, Int. J. Cancer, vol.50, pp.677-682, 1992.

G. Galfre, S. C. Howe, C. Milstein, G. W. Butcher, and J. C. Howard, Antibodies to major histocompatibility antigens produced by hybrid cell lines, Nature, vol.266, pp.550-552, 1977.

M. Hazen, An improved and robust DNA immunization method to develop antibodies against extracellular loops of multi-transmembrane proteins, MAbs, vol.6, pp.95-107, 2014.

F. Toscano, p53-mediated upregulation of DcR1 impairs oxaliplatin/ TRAIL-induced synergistic anti-tumour potential in colon cancer cells, Oncogene, vol.27, pp.4161-4171, 2008.

A. Morle, C. Garrido, and O. Micheau, Hyperthermia restores apoptosis induced by death receptors through aggregation-induced c-FLIP cytosolic depletion, Cell Death Dis, vol.6, p.1633, 2015.

A. Morizot, Chemotherapy overcomes TRAIL-R4-mediated TRAIL resistance at the DISC level, Cell Death Differ, vol.18, pp.700-711, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00525443

E. S. Sung, A novel agonistic antibody to human death receptor 4 induces apoptotic cell death in various tumor cells without cytotoxicity in hepatocytes, Mol. Cancer Ther, vol.8, pp.2276-2285, 2009.

K. Motoki, Enhanced apoptosis and tumor regression induced by a direct agonist antibody to tumor necrosis factor-related apoptosis-inducing ligand receptor 2, Clin. Cancer Res, vol.11, pp.3126-3135, 2005.

Z. Kang, Drozitumab, a human antibody to death receptor 5, has potent antitumor activity against rhabdomyosarcoma with the expression of caspase8 predictive of response, Clin. Cancer Res, vol.17, pp.3181-3192, 2011.

M. P. Piechocki, Induction of proapoptotic antibodies to triple-negative breast cancer by vaccination with TRAIL death receptor DR5 DNA, Int. J. Cancer, vol.131, pp.2562-2572, 2012.

H. A. Huet, Multivalent nanobodies targeting death receptor 5 elicit superior tumor cell killing through efficient caspase induction, MAbs, vol.6, pp.1560-1570, 2014.

M. Nagane, S. Shimizu, E. Mori, S. Kataoka, and Y. Shiokawa, Predominant antitumor effects by fully human anti-TRAIL-receptor 2 (DR5) monoclonal antibodies in human glioma cells in vitro and in vivo, Neuro Oncol, vol.12, pp.687-700, 2010.

T. A. Luster, J. A. Carrell, K. Mccormick, D. Sun, and R. Humphreys, Mapatumumab and lexatumumab induce apoptosis in TRAIL-R1 and TRAIL-R2 antibody-resistant NSCLC cell lines when treated in combination with bortezomib, Mol. Cancer Ther, vol.8, pp.292-302, 2009.

M. H. Tuthill, TRAIL-R2-specific antibodies and recombinant TRAIL can synergise to kill cancer cells, Oncogene, vol.34, pp.2138-2144, 2015.

Z. Hao, Fully human monoclonal antibodies to TRAIL-R1 enhance TRAILinduced apoptosis via activation of caspase-8 pathway, Biochem. Biophys. Res. Commun, vol.475, pp.238-244, 2016.

L. Guo, Identification of novel epitopes with agonistic activity for the development of tumor immunotherapy targeting TRAIL-R1, J. Cancer, vol.8, pp.2542-2553, 2017.

T. M. Ganten, Prognostic significance of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor expression in patients with breast cancer, J. Mol. Med, vol.87, pp.995-1007, 2009.

S. Macher-goeppinger, Prognostic value of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and TRAIL receptors in renal cell cancer, Clin. Cancer Res, vol.15, pp.650-659, 2009.

Y. J. Min, Prognostic significance of Fas (CD95) and TRAIL receptors (DR4/ DR5) expression in acute myelogenous leukemia, Leuk. Res, vol.28, pp.359-365, 2004.

P. Bavi, Prognostic significance of TRAIL death receptors in Middle Eastern colorectal carcinomas and their correlation to oncogenic KRAS alterations, Mol. Cancer, vol.9, p.203, 2010.

A. Ashkenazi, P. Holland, and S. G. Eckhardt, Ligand-based targeting of apoptosis in cancer: the potential of recombinant human apoptosis ligand 2/Tumor necrosis factor-related apoptosis-inducing ligand (rhApo2L/TRAIL), J. Clin. Oncol, vol.26, pp.3621-3630, 2008.

H. Wajant, Principles of antibody-mediated TNF receptor activation, Cell Death Differ, vol.22, pp.1727-1741, 2015.

A. Ashkenazi, Safety and antitumor activity of recombinant soluble Apo2 ligand, J. Clin. Invest, vol.104, pp.155-162, 1999.

P. J. Kaplan-lefko, Conatumumab, a fully human agonist antibody to death receptor 5, induces apoptosis via caspase activation in multiple tumor types, Cancer Biol. Ther, vol.9, pp.618-631, 2010.

K. Takeda, Induction of tumor-specific T cell immunity by anti-DR5 antibody therapy, J. Exp. Med, vol.199, pp.437-448, 2004.