D. A. Arber, A. Orazi, R. Hasserjian, J. Thiele, M. J. Borowitz et al., The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia, Blood, vol.127, pp.2391-2405, 2016.

A. Tefferi, P. Guglielmelli, D. R. Larson, C. Finke, E. A. Wassie et al., Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis, Blood, vol.124, pp.2507-2513, 2014.

F. Cervantes, B. Dupriez, A. Pereira, F. Passamonti, J. T. Reilly et al., New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment, Blood, vol.113, pp.2895-2901, 2009.

C. James, V. Ugo, J. Couédic, J. Staerk, F. Delhommeau et al., A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera, Nature, vol.434, p.1144, 2005.

T. Klampfl, H. Gisslinger, A. S. Harutyunyan, H. Nivarthi, E. Rumi et al., Somatic mutations of calreticulin in myeloproliferative neoplasms, vol.369, pp.2379-2390, 2013.

Y. Pikman, B. H. Lee, T. Mercher, E. Mcdowell, B. L. Ebert et al., MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia, PLoS Med, vol.270, issue.3, 2006.

J. Nangalia, C. E. Massie, E. J. Baxter, F. L. Nice, G. Gundem et al., Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2, vol.369, pp.2391-2405, 2013.

E. Rumi, D. Pietra, C. Pascutto, P. Guglielmelli, A. Martinez-trillos et al., Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis, Blood, vol.124, pp.1062-1069, 2014.

G. Rotunno, C. Mannarelli, P. Guglielmelli, A. Pacilli, A. Pancrazzi et al., Impact of calreticulin mutations on clinical and hematological phenotype and outcome in essential thrombocythemia, Blood, vol.123, pp.1552-1555, 2014.

B. Da, C. R. Monte-mor, J. De, P. Ayres-silva, W. D. Correia et al., Clinical features of JAK2V617F-or CALRmutated essential thrombocythemia and primary myelofibrosis

. Dis, , vol.60, pp.74-77, 2016.

E. Toska and S. G. Roberts, Mechanisms of transcriptional regulation by WT1 (Wilms' tumour 1), Biochem. J, vol.461, pp.15-32, 2014.

Y. Chau and N. D. Hastie, The role of Wt1 in regulating mesenchyme in cancer, development, and tissue homeostasis, Trends Genet, vol.28, pp.515-524, 2012.

L. Yang, Y. Han, F. S. Saiz, and M. D. Minden, A tumor suppressor and oncogene: the WT1 story, Leukemia, vol.21, 2007.

T. Lopotová, J. Polák, J. Schwarz, H. Klamová, and J. Moravcová, Expression of four major WT1 splicing variants in acute and chronic myeloid leukemia patients analyzed by newly developed four real-time RT PCRs, Blood Cells Mol. Dis, vol.49, pp.41-47, 2012.

R. Rampal, A. Alkalin, J. Madzo, A. Vasanthakumar, E. Pronier et al., DNA hydroxymethylation profiling reveals that WT1 mutations result in loss of TET2 function in acute myeloid leukemia, Cell Rep, vol.9, pp.1841-1855, 2014.

Y. Wang, M. Xiao, X. Chen, L. Chen, Y. Xu et al., WT1 recruits TET2 to regulate its target gene expression and suppress leukemia cell proliferation, Mol. Cell, vol.57, pp.662-673, 2015.

K. Inoue, H. Sugiyama, H. Ogawa, M. Nakagawa, T. Yamagami et al., WTI as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia, Blood, vol.84, pp.3071-3079, 1994.

D. Cilloni, E. Gottardi, F. Messa, M. Fava, P. Scaravaglio et al., Piedmont study group on myleodysplastic syndromes, Significant correlation between the degree of WT1 expression and the International Prognostic Scoring System Score in patients with myelodysplastic syndromes, J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol, vol.21, 1988.

D. Cilloni, E. Gottardi, D. D. Micheli, A. Serra, G. Volpe et al., Rege-Cambrin, Fig. 3. Evolution of WT1 transcript quantification and JAK2V617F allele burden in a patient after allogenic graft and donor lymphocytes injection (DLI)

L. Cottin, Blood Cells, Molecules and Diseases, vol.75, pp.35-40, 2019.

A. Guerrasio, M. Divona, F. L. Coco, and G. Saglio, Quantitative assessment of WT1 leukemia patients, Leukemia, vol.16, p.2115, 2002.

H. Ogawa, The usefulness of monitoring WT1 gene transcripts for the prediction and management of relapse following allogeneic stem cell transplantation in acute type leukemia, Blood, vol.101, pp.1698-1704, 2003.

D. Cilloni, A. Renneville, F. Hermitte, R. K. Hills, S. Daly et al., Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: a European leukemia net study, J. Clin. Oncol, vol.27, pp.5195-5201, 2009.

P. Guglielmelli, R. Zini, C. Bogani, S. Salati, A. Pancrazzi et al., Molecular profiling of CD34+ cells in idiopathic myelofibrosis identifies a set of disease-associated genes and reveals the clinical significance of Wilms' tumor gene 1 (WT1), Stem Cells, vol.25, pp.165-173, 2007.

D. Gallo, P. Nicoli, C. Calabrese, V. Gaidano, J. Petiti et al., The Wilms' tumor (WT1) gene expression correlates with the International Prognostic Scoring System (IPSS) score in patients with myelofibrosis and it is a marker of response to therapy, Cancer Med, vol.5, pp.1650-1653, 2016.

P. Lafaye-de-micheaux, B. Liquet, S. Marque, and J. Riou, Power and sample size determination in clinical trials with multiple primary continuous correlated endpoints, J. Biopharm. Stat, vol.24, pp.378-397, 2014.

F. Bretz, T. Horthon, and P. Westfall, Multiple Comparison Using R, 2016.

K. S. Pollard, S. Dudoit, and M. J. Van-der-laan, Multiple testing procedures: the multtest package and applications to genomics, Bioinforma. Comput. Biol. Solut. Using R Bioconductor, pp.249-271, 2005.

R. Gentleman, V. Carey, and W. Huber, Bioinformatics and Computational Biology Solutions Using R and Bioconductor, 2005.

C. Orvain, D. Paz, I. Dobo, L. Cottin, G. L. Calvez et al., Circulating Cd34+ cell count differentiates primary myelofibrosis from other Philadelphia-negative myeloproliferative neoplasms: a pragmatic study, Ann. Hematol, vol.95, pp.1819-1823, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01382431

F. Passamonti, L. Vanelli, L. Malabarba, E. Rumi, E. Pungolino et al., Clinical utility of the absolute number of circulating CD34-positive cells in patients with chronic myeloproliferative disorders, Haematologica, vol.88, p.7, 2003.

A. Carobbio, G. Finazzi, J. Thiele, H. Kvasnicka, F. Passamonti et al., Blood tests may predict early primary myelofibrosis in patients presenting with essential thrombocythemia, Am. J. Hematol, vol.87, pp.203-204, 2012.

P. A. Beer, P. J. Campbell, and A. R. Green, Comparison of different criteria for the diagnosis of primary myelofibrosis reveals limited clinical utility for measurement of serum lactate dehydrogenase, Haematologica, vol.95, pp.1960-1963, 2010.

M. Brousseau, E. Parot-schinkel, M. Moles, F. Boyer, M. Hunault et al., Practical application and clinical impact of the WHO histopathological criteria on bone marrow biopsy for the diagnosis of essential thrombocythemia versus prefibrotic primary myelofibrosis: bone marrow in essential thrombocythemia, Histopathology, vol.56, pp.758-767, 2010.

A. Alvarez-larrán, A. Ancochea, M. García, F. Climent, F. García-pallarols et al., WHO-histological criteria for myeloproliferative neoplasms: reproducibility, diagnostic accuracy and correlation with gene mutations and clinical outcomes, Br. J. Haematol, vol.166, pp.911-919, 2014.

L. Cottin, Blood Cells, Molecules and Diseases, vol.75, pp.35-40, 2019.