P. K. Andersen and R. D. Gill, Cox's regression model for counting processes: A large sample study, Annals of Statistics, vol.10, pp.1100-1120, 1982.

P. C. Austin, Generating survival times to simulate Cox proportional hazards models with time-varying covariates, Statistics in Medicine, vol.31, pp.3946-3958, 2012.

S. Bailly, R. Pirracchio, and J. F. Timsit, What's new in the quantification of causal effects from longitudinal cohort studies: A brief introduction to marginal structural models for intensivists, Intensive Care Medicine, vol.42, pp.576-579, 2016.

L. Beaugerie, N. Brousse, A. M. Bouvier, J. F. Colombel, M. Lémann et al., Lymphoproliferative disorders in patients receiving thiopurines for inflammatory bowel disease: A prospective observational cohort study, Lancet, vol.374, pp.1617-1625, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00466312

L. Beaugerie, M. Svrcek, P. Seksik, A. M. Bouvier, T. Simon et al., Risk of colorectal high-grade dysplasia and cancer in a prospective observational cohort of patients with inflammatory bowel disease, Gastroenterology, vol.145, pp.166-175, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00806654

B. Chakraborty and E. Moodie, Statistical methods for dynamic treatment regimes, 2013.

S. Cole and M. Hernàn, Constructing inverse probability weights for marginal structural models, American Journal of Epidemiology, vol.168, pp.656-664, 2008.

C. Csajka and D. Verotta, Pharmacokinetic-pharmacodynamic modelling: history and perspectives, Journal of Pharmacokinetics and Pharmacodynamics, vol.33, pp.227-279, 2006.

A. Gutierrez-dalmau and J. M. Campistol, Immunosuppressive therapy and malignancy in organ transplant recipients: a systematic review, Drugs, vol.67, pp.1167-1198, 2007.

M. Hernán, B. Brumback, and J. Robins, Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men, Epidemiology, vol.11, pp.561-570, 2000.

M. Hernán, B. Brumback, and J. Robins, Marginal structural models to estimate the joint causal effect of nonrandomized treatments, Journal of the American Statistical Association, vol.96, pp.440-448, 2001.

A. Jahn-eimermacher, K. Ingel, A. K. Ozga, S. Preussler, and H. Binder, Simulating recurrent event data with hazard functions defined on a total time scale, BMC Medical Research Methodology, vol.15, p.16, 2015.

J. Robins, M. Hernán, and B. Brumback, Marginal structural models and causal inference in epidemiology, Epidemiology, vol.11, pp.550-560, 2000.

M. P. Sylvestre and M. Abrahamowicz, Flexible modeling of the cumulative effects of time-dependent exposures on the hazard, Statistics in Medicine, vol.28, pp.3437-3453, 2009.

W. Van-der-wal and R. Geskus, ipw: An R package for inverse probability weighting, Journal of Statistical Software, vol.43, pp.1-23, 2011.

Y. Xiao, M. Abrahamowicz, E. E. Moodie, R. Weber, and J. Young, Flexible marginal structural models for estimating the cumulative effect of a time-dependent treatment on the hazard: Reassessing the cardiovascular risks of didanosine treatment in the Swiss HIV cohort study, Journal of the American Statistical Association, vol.109, pp.455-464, 2014.