J. M. Adams and S. Cory, The BCL-2 arbiters of apoptosis and their growing role as cancer targets, Cell Death Differ, vol.25, pp.27-36, 2018.

M. Sattler, H. Liang, D. Nettesheim, R. P. Meadows, J. E. Harlan et al., Structure of Bcl-x L-Bak peptide complex: recognition between regulators of apoptosis, Science, vol.14, pp.983-986, 1997.

B. Ku, C. Liang, J. U. Jung, and B. Oh, Evidence that inhibition of BAX activation by BCL-2 involves its tight and preferential interaction with the BH3 domain of BAX, Cell Res, vol.21, pp.627-641, 2011.

A. M. Petros, D. G. Nettesheim, Y. Wang, E. T. Olejniczak, R. P. Meadows et al., Rationale for Bcl-x L /Bad peptide complex formation from structure, mutagenesis, and Biophysical studies, Protein Sci, vol.9, pp.2528-2534, 2000.

E. F. Lee, P. E. Czabotar, H. Yang, B. E. Sleebs, G. Lessene et al., Conformational changes in Bcl-2 pro-survival proteins determine their capacity to bind ligands, J. Biol. Chem, vol.284, pp.30508-30517, 2009.

Q. M. , T. Liu, T. Sprules, E. Matta-camacho, N. Mansur-azzam et al., Apoptotic regulation by MCL-1 through heterodimerization, J. Biol. Chem, vol.285, 2010.

C. L. Day, C. Smits, F. C. Fan, E. F. Lee, W. D. Fairlie et al., Structure of the BH3 domains from the p53-inducible BH3-only proteins Noxa and Puma in complex with Mcl-1, J. Mol. Biol, vol.380, pp.958-971, 2008.

P. E. Czabotar, E. F. Lee, M. F. Van-delft, C. L. Day, B. J. Smith et al., Structural insights into the degradation of Mcl-1 induced by BH3 domains, Proc. Natl. Acad. Sci. U.S.A, vol.104, pp.6217-6222, 2007.

A. Frenzel, F. Grespi, W. Chmelewskij, and A. Villunger, Bcl2 family proteins in carcinogenesis and the treatment of cancer, Cell Death Dis, vol.14, pp.584-596, 2009.

E. Brotin, M. Meryet-figui-ere, K. Simonin, R. E. Duval, M. Villedieu et al., Bcl-x L and MCL-1 constitute pertinent targets in ovarian carcinoma and their concomitant inhibition is sufficient to induce apoptosis, Int. J. Canc, vol.126, pp.885-895, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01650312

M. Villedieu, M. Louis, S. Dutoit, E. Brotin, H. Lincet et al., Absence of Bcl-x L down-regulation in response to cisplatin is associated with chemoresistance in ovarian carcinoma cells, Gynecol. Oncol, vol.105, pp.31-44, 2007.

M. F. Van-delft, A. H. Wei, K. D. Mason, C. J. Vandenberg, L. Chen et al., The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized, Cancer Cell, vol.10, pp.389-399, 2006.

S. Chen, Y. Dai, H. Harada, P. Dent, and G. Grant, Mcl-1 down-regulation potentiates ABT-737 Lethality by cooperatively inducing Bak activation and Bax translocation, Cancer Res, vol.67, pp.782-791, 2007.

M. D. Giorgi, A. S. Voisin-chiret, and S. Rault, Targeting the BH3 domain of Bcl-2 family proteins. A brief history from natural products to foldamers as promising cancer therapeutic avenues, Curr. Med. Chem, vol.20, pp.2964-2978, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00918387

J. Montero and A. Letai, Why do BCL-2 inhibitors work and where should we use them in the clinic?, Cell Death Differ, pp.1-9, 2017.

T. Oltersdorf, S. W. Elmore, A. R. Shoemaker, R. C. Armstrong, D. J. Augeri et al., An inhibitor of Bcl-2 family proteins induces regression of solid tumours, Nature, vol.435, pp.677-681, 2005.

C. Tse, A. R. Shoemaker, J. Adickes, M. G. Anderson, J. Chen et al., ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor, vol.68, pp.3421-3428, 2008.

A. R. Shoemaker, M. J. Mitten, J. Adickes, S. Ackler, M. Refici et al., Activity of the Bcl-2 family InhibitorABT-263 in a panel of small cell lung cancer xenograft models, Clin. Canc. Res, vol.14, pp.3268-3277, 2008.

W. H. Wilson, O. A. O'connor, M. S. Czuczman, A. S. Lacasce, J. F. Gerecitano et al., Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity, Lancet Oncol, vol.11, pp.1149-1159, 2010.

A. W. Roberts, J. F. Seymour, J. R. Brown, W. G. Wierda, T. J. Kipps et al., Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease, J. Clin. Oncol, vol.30, pp.488-496, 2012.

L. Gandhi, D. R. Camidge, M. Ribeiro-de-oliveira, P. Bonomi, D. Gandara et al., Phase I study of navitoclax (ABT263), a novel Bcl-2 family inhibitor, in patients with small-cell lung cancer and other solid tumors, J. Clin. Oncol, vol.29, pp.909-916, 2011.

K. D. Mason, M. R. Carpinelli, J. I. Fletcher, J. E. Collinge, A. A. Hilton et al., Programmed anuclear cell death delimits platelet Life span, Cell, vol.128, pp.1173-1186, 2007.

A. W. Roberts, M. S. Davids, J. M. Pagel, B. S. Kahl, S. D. Puvvada et al., Targeting BCL2 with Venetoclax in relapsed chronic lymphocytic leukemia, pp.1-12, 2015.

A. J. Souers, J. D. Leverson, E. R. Boghaert, S. L. Ackler, N. D. Catron et al., ABT-199, a potent and selective BCL-2 inhibitor, Nature Medecine, vol.19, pp.202-210, 2013.

S. E. Alford, A. Kothari, F. C. Loeff, J. M. Eichhorn, N. Sakurikar et al., BH3 inhibitor sensitivity and Bcl-2 dependence in primary acute lymphoblastic leukemia cells, Cancer Res, vol.75, pp.1366-1375, 2015.

C. , Mcl-1 is a potential therapeutic target in multiple types of cancer, Cell. Mol. Life Sci, vol.66, pp.1326-1336, 2009.

R. Beroukhim, C. H. Mermel, D. Porter, G. Wei, S. Raychaudhuri et al., The landscape of somatic copy-number alteration across human cancers, vol.463, pp.899-905, 2010.

A. Jebahi, M. V. Lechartier, E. Brotin, M. Louis, E. Abeilard et al., PI3K/ mTOR dual inhibitor NVP-BEZ235 decreases Mcl-1 expression and sensitizes ovarian carcinoma cells to Bcl-x L-targeting strategies, Cancer Lett, vol.348, pp.38-49, 2014.

I. Gojo, B. Zhang, and R. G. Fenton, The cyclin-dependent kinase inhibitor flavopiridol induces apoptosis in multiple myeloma cells through transcriptional repression and down-regulation of Mcl-1, Clin. Canc. Res, vol.8, pp.3527-3538, 2002.

M. Bonnefond, B. Lambert, F. Giffard, E. Abeilard, E. Brotin et al., Calcium signals inhibition sensitizes ovarian carcinoma cells to anti-Bcl-x L strategies through Mcl-1 down-regulation, Apoptosis, vol.20, pp.535-550, 2015.

M. V. Lechartier, C. Duboc, A. Jebahi, M. Louis, E. Abeilard et al., The mTORC1/2 inhibitor AZD8055 strengthens the efficiency of the MEK inhibitor trametinib to reduce the Mcl-1/[Bim and Puma] ratio and to sensitize ovarian carcinoma cells to ABT-737, Mol. Canc. Therapeut, vol.16, pp.102-115, 2017.

M. L. Stewart, E. Firo, A. E. Keating, and L. D. Walensky, The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer, Nat. Chem. Biol, vol.6, pp.595-601, 2010.

A. Muppidi, K. Doi, S. Edwardraja, E. J. Drake, A. M. Gulick et al., Rational design of proteolytically stable, cell-permeable peptide-based selective Mcl-1 inhibitors, J. Am. Chem. Soc, vol.134, pp.14734-14737, 2012.

A. Kotschy, Z. Szlavik, J. Murray, J. Davidson, A. L. Maragno et al., The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models, pp.1-5, 2016.

C. Gloaguen, A. S. Voisin-chiret, J. Sopkov-a-de-oliveira, J. Santos, F. Fogha et al., First evidence that oligopyridines, ahelix foldamers, inhibit Mcl-1 and sensitize ovarian carcinoma cells to Bcl-x Ltargeting strategies, J. Med. Chem, vol.58, pp.1644-1668, 2015.

N. A. Cohen, M. L. Stewart, E. Gavathiotis, J. L. Tepper, S. R. Bruekner et al., A competitive stapled peptide screen identifies a selective small molecule that overcomes MCL-1-dependent leukemia cell survival, Chem. Biol, vol.19, pp.1175-1186, 2012.

J. D. Leverson, H. Zhang, J. Chen, S. K. Tahir, D. C. Phillips et al., The. Potent and selective small-molecule MCL-1 inhibitors demonstrate on-target cancer cell killing activity as single agents and in combination with ABT-263 (navitoclax), Cell Death Dis, vol.6, pp.1-11, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01638832

A. Ashkenazi, W. J. Fairbrother, J. D. Leverson, and A. J. Souers, From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors, Nat. Rev. Drug Discov, vol.16, pp.273-284, 2017.

J. Belmar and S. W. Fesik, Small molecule Mcl-1 inhibitors for the treatment of cancer, Pharmacol. Ther, vol.145, pp.76-84, 2015.

A. M. Beekman and L. A. Howell, Small-molecule and peptide inhibitors of the prosurvival protein Mcl-1, ChemMedChem, vol.11, pp.802-813, 2016.

A. M. Petros, S. L. Swann, D. Song, K. Swinger, C. Park et al., Fragment-based discovery of potent inhibitors of the anti-apoptotic MCL-1 protein, Bioorg. Med. Chem. Lett, vol.24, pp.1484-1488, 2014.

D. J. Richard, R. Lena, T. Bannister, N. Blake, W. E. Pierceall et al., Hydroxyquinoline-derived compounds and analoguing of selective Mcl-1 inhibitors using a functional biomarker, Bioorg. Med. Chem. Lett, vol.21, pp.6642-6649, 2013.

M. Bruncko, L. Wang, G. S. Sheppard, D. C. Phillips, S. K. Tahir et al., Structure-guided design of a series of MCL-1 inhibitors with high affinity and selectivity, J. Med. Chem, vol.58, pp.2180-2194, 2015.

D. Merino, J. R. Whittle, F. Vaillant, A. Serrano, J. Gong et al., Synergistic action of the MCL-1 inhibitor S63845 with current therapies in preclinical models of triple-negative and HER2-amplified breast cancer, Sci. Transl. Med, vol.9, p.7049, 2017.

J. Sopkov-a-de-oliveira, A. S. Santos, G. Voisin-chiret, L. Burzicki, M. Sebaoun et al., Structural characterizations of oligopyridyl foldamers, alpha-helix mimetics, J. Chem. Inf. Model, vol.52, pp.429-439, 2012.

S. Perato, J. Fogha, M. Sebban, A. S. Voisin-chiret, S. J. Sopkova-de-oliveira et al., Conformation control of abiotic alpha-helical foldamers, J. Chem. Inf. Model, vol.53, pp.2671-2680, 2013.

A. C. Groo, M. De-pascale, A. S. Voisin-chiret, S. Corvaisier, M. Since et al., MalzertFr eon, Comparison of 2 strategies to enhance pyridoclax solubility: nanoemulsion delivery system versus salt synthesis, Eur. J. Pharmaceut. Sci, vol.97, pp.218-226, 2017.

S. N. Willis, L. Chen, G. Dewson, A. Wei, E. Naik et al., Proapoptotic Bak is sequestered by Mcl-1 and Bcl-x L , but not Bcl-2, until displaced by BH3-only proteins titre Genes, Devenir, vol.19, pp.1294-1305, 2005.

J. Fogha, B. Marekha, M. De-giorgi, A. S. Voisin-chiret, S. Rault et al., Toward understanding Mcl-1 promiscuous and specific binding mode, J. Chem. Inf. Model, vol.57, pp.2885-2895, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02043710

A. M. Petros, E. T. Olejniczak, and S. W. Fesik, Structural biology of the Bcl-2 family of proteins, Biochim. Biophys. Acta, vol.1644, pp.83-94, 2004.

M. D. Boersma, J. D. Sadowsky, Y. A. Tomita, and S. H. Gellman, Hydrophile scanning as a complement to alanine scanning for exploring and manipulating proteinprotein recognition: application to the Bim BH3 domain, Protein Sci, vol.17, pp.1232-1240, 2008.

P. Lassalas, B. Gay, C. Lasfargeas, M. J. James, V. Tran et al., Structure property relationships of carboxylic acid isosteres, J. Med. Chem, vol.59, pp.3183-3203, 2016.

K. C. Fylaktakidou, D. J. Hadjipavlou-litina, K. E. Litinas, E. A. Varella, and D. N. Nicolaides, Recent developments in the chemistry and in the biological applications of amidoximes, Curr. Pharmaceut. Des, vol.14, pp.1001-1047, 2008.

A. Bouillon, A. S. Voisin, A. Robic, J. C. Lancelot, V. Collot et al., An efficient two-step total synthesis of the quaterpyridine nemertelline, J. Org. Chem, vol.68, pp.10178-10180, 2003.

G. Burzicki, A. S. Voisin-chiret, J. Sopkova-de-oliveira, S. Santo, and . Rault, Synthesis of dihalo bi-and terpyridines by regioselective Suzuki-Miyaura crosscoupling reactions, Tetrahedron, vol.65, pp.5413-5417, 2009.

G. Burzicki, A. S. Voisin-chiret, J. Sopkova-de-oliveira, S. Santos, and . Rault, Terpyridines using iterative cross-coupling reactions, vol.16, pp.2804-2810, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02045907

A. S. Voisin-chiret and S. Rault, Using halo (het) arylboronic species to achieve synthesis of foldamers as protein-protein interaction disruptors, Pure Appl. Chem, vol.84, pp.2467-2478, 2012.

A. S. Voisin-chiret, A. Bouillon, G. Burzicki, M. Elant, R. Legay et al., A general synthesis of halo-oligopyridines. The Garlanding concept, Tetrahedron, vol.65, pp.607-612, 2009.

R. Rossi, F. Bellina, and M. Lessi, Selective palladium-catalyzed suzukiemiyaura reactions of polyhalogenated heteroarenes, Adv. Synth. Catal, vol.354, pp.1181-1255, 2012.

L. M. Daykin, J. S. Siddle, A. L. Ankers, A. S. Batsanov, and M. R. Bryce, Tetrahedron, vol.66, pp.668-675, 2010.

S. Perato, M. De-giorgi, G. Burzicki, F. Egalit-e, S. Rault et al., Focus on microwaves assisted halogen-halogen reaction conditions on 2halopyridines, vol.1, pp.75-80, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00997593

M. Konopleva, D. A. Pollyea, J. Potluri, B. Chyla, L. Hogdal et al., Efficacy and biological correlates of response in a phase II study of Venetoclax monotherapy in patients with acute myelogenous leukemia, Cancer Discov, vol.6, pp.1106-1117, 2016.

S. Lheureux, M. N'diaye, C. Blanc-fournier, A. E. Dugu-e, B. Clarisse et al., Identification of predictive factors of response to the BH3mimetic molecule ABT-737: an ex vivo experiment in human serous ovarian carcinoma, Int. J. Canc, vol.136, pp.340-350, 2015.

M. Konopleva, R. Contractor, T. Tsao, I. Samudio, P. P. Ruvolo et al., Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia, vol.10, pp.375-388, 2006.

R. Pan, V. R. Ruvolo, J. Wei, M. Konopleva, J. C. Reed et al., Inhibition of Mcl-1 with the pan-Bcl-2 family inhibitor (-)BI97D6 overcomes ABT-737 resistance in acute myeloid leukemia, Blood, vol.126, pp.363-372, 2015.

D. A. Luedtke, X. Niu, Y. Pan, J. Zhao, S. Liu et al., Inhibition of Mcl-1 enhances cell death induced by the Bcl-2selective inhibitor ABT-199 in acute myeloid leukemia cells, Signal Transduct. Targeted Ther, vol.2, p.17012, 2017.

P. E. Hughes, The discovery and preclinical characterization of AMG 176: a first-in-class Mcl-1 inhibitor in clinical development for multiple myeloma, Proceedings of the American Association for Cancer Research Annual Meeting, vol.77, 2017.

S. R. Caenepeel, B. Belmontes, J. Sun, A. Coxon, G. Moody et al., Preclinical evaluation of AMG 176, a novel, potent and selective Mcl-1 inhibitor with robust anti-tumor activity in Mcl-1 dependent cancer models, Proceedings of the American Association for Cancer Research Annual Meeting, vol.77, 2017.

V. Del-gaizo-moore and A. Letai, Rational design of therapeutics targeting the BCL2 family: are some cancer cells primed for death but waiting for a final push, Adv. Exp. Med. Biol, vol.615, pp.159-175, 2008.

G. Jones, P. Willett, and R. C. Glen, Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation, J. Mol. Biol, vol.245, pp.43-53, 1995.

G. Jones, P. Willett, R. C. Glen, A. R. Leach, and R. Taylor, Development and validation of a genetic algorithm for flexible docking, J. Mol. Biol, vol.267, pp.727-748, 1997.

N. F. Pelz, Z. Bian, B. Zhao, S. Shaw, J. C. Tarr et al., Discovery of 2-Indole-acylsulfonamide myeloid cell leukemia 1 (Mcl-1) inhibitors using fragment-based methods, J. Med. Chem, vol.59, pp.2054-2066, 2016.

, Discovery Studio Modeling Environment, 2016.

J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid et al., Scalable molecular dynamics with NAMD, J. Comput. Chem, vol.26, pp.1781-1802, 2005.

R. B. Best, Z. Zhu, J. Shim, P. E. Lopes, J. Mittal et al., Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the Backbone f, j and side-chain c1 and c2 dihedral angles, J. Chem. Theor. Comput, vol.8, pp.3257-3273, 2012.

K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong et al., CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force field, J. Comput. Chem, vol.31, pp.671-690, 2010.

W. Yu, X. He, K. Vanommeslaeghe, and A. D. Mackerell, Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations, J. Comput. Chem, vol.33, pp.2451-2468, 2012.

W. L. Jorgensen, J. Chandrasekhar, and J. D. Madura, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys, vol.79, pp.926-935, 1983.

S. Jo, T. Kim, V. G. Iyer, and W. Im, CHARMM-GUI: a web-based graphical user interface for CHARMM, J. Comput. Chem, vol.29, pp.1859-1865, 2008.

T. Darden, D. York, and L. Pedersen, Particle mesh Ewald: an N$log(N) method for Ewald sums in large systems, J. Chem. Phys, vol.98, pp.10089-10092, 1993.

J. P. Ryckaert, G. Ciccotti, and H. J. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: moleculardynamics of n-alkanes, J. Comput. Phys, vol.23, pp.327-334, 1977.

B. R. Brooks, C. L. Brooks, I. , A. D. Mackerell, L. Nilsson et al., CHARMM: the biomolecular simulation program, J. Comput. Chem, vol.30, pp.1545-1614, 2009.

L. Poulain, H. Lincet, F. Duigou, E. Deslandes, F. Sichel et al., Acquisition of chemoresistance in a human ovarian carcinoma cell is linked to a defect in cell cycle control, Int. J. Canc, vol.78, pp.454-463, 1998.