J. M. Reichert, Antibodies to watch in 2014: Mid-year update, mAbs, vol.6, p.24846335, 2014.
DOI : 10.4161/mabs.29282

URL : https://www.tandfonline.com/doi/pdf/10.4161/mabs.29282?needAccess=true


X. Huang, S. Wang, C. Lee, X. Yang, and B. Liu, HDAC inhibitor SNDX-275 enhances efficacy of trastuzumab in erbB2-overexpressing breast cancer cells and exhibits potential to overcome trastuzumab resistance, Cancer Lett, vol.307, pp.72-81, 2011.

S. S. Gayle, R. C. Castellino, M. C. Buss, and R. Nahta, MEK inhibition increases lapatinib sensitivity via modulation of FOXM1, Curr Med Chem, vol.20, pp.2486-99, 2013.

, , p.23531216

K. Liang, F. J. Esteva, C. Albarracin, K. Stemke-hale, Y. Lu et al., Recombinant human erythropoietin antagonizes trastuzumab treatment of breast cancer cells via Jak2-mediated Src activation and PTEN inactivation, Cancer Cell, vol.18, pp.423-458, 2010.

H. E. Kohrt, I. Sagiv-barfi, S. Rafiq, S. Herman, J. P. Butchar et al., Ibrutinib antagonizes rituximabdependent NK cell-mediated cytotoxicity, Blood, vol.123, pp.1957-60, 2014.
DOI : 10.1182/blood-2014-01-547869

URL : http://www.bloodjournal.org/content/123/12/1957.full.pdf

A. Wiestner, Targeting B-Cell receptor signaling for anticancer therapy: the Bruton's tyrosine kinase

, A) combination of rituximab and obinutuzumab with ibrutinib; (B) combination of trastuzumab with ibrutinib. The human follicular line RL (Fig. 5A) and the human breast cancer line BT474 (Fig. 5B) were grown as subcutaneous xenografts in SCID mice. Treatment with antibodies (rituximab 30 mg/kg/week, obinutuzumab 30 mg/kg/ week, trastuzumab 25 mg/kg/week) and ibrutinib (25 mg/kg/day, 5 d a week) was initiated when tumor volume reached 100 mm 3, Figure 5. In vivo effect of combinations of antibodies with ibrutinib

*. , 01. inhibitor ibrutinib induces impressive responses in Bcell malignancies, J Clin Oncol, vol.31, pp.128-158, 2013.

, , p.23045586

B. J. Lannutti, S. A. Meadows, S. Herman, A. Kashishian, B. Steiner et al., CAL-101, a p110delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability, Blood, vol.117, pp.591-595, 2011.

, , 20959606.

S. Maira, F. Stauffer, and C. Schnell, Garc ?a-Echeverr ?a C. PI3K inhibitors for cancer treatment: where do we stand?, Biochem Soc Trans, vol.37, pp.265-72, 2009.

, , 19143644.

P. M. Bhende, S. I. Park, M. S. Lim, D. P. Dittmer, and B. Damania, The dual PI3K/mTOR inhibitor, NVP-BEZ235, is efficacious against follicular lymphoma, Leukemia, vol.24, pp.1781-1785, 2010.

S. Uddin, A. R. Hussain, A. K. Siraj, P. S. Manogaran, N. A. Aljomah et al., Role of phosphatidylinositol 3'kinase/AKT pathway in diffuse large B-cell lymphoma survival, Blood, vol.108, p.16946303, 2006.


S. Dalle, L. Reslan, T. Besseyre-de-horts, S. Herveau, F. Herting et al., Preclinical studies on the mechanism of action and the anti-lymphoma activity of the novel anti-CD20 antibody GA101, Mol Cancer Ther, vol.10, pp.178-85, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00790588

S. Maira, F. Stauffer, J. Brueggen, P. Furet, C. Schnell et al., Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity, Mol Cancer Ther, vol.7, p.18606717, 2008.


S. Kheirallah, P. Caron, E. Gross, A. Quillet-mary, J. Bertrand-michel et al., Rituximab inhibits B-cell receptor signaling, Blood, vol.115, pp.985-94, 2010.

M. L. Wang, S. Rule, P. Martin, A. Goy, R. Auer et al., Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma, N Engl J Med, vol.369, pp.507-523, 2013.

J. C. Byrd, R. R. Furman, S. E. Coutre, I. W. Flinn, J. A. Burger et al., Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia, N Engl J Med, vol.369, pp.32-42, 2013.

J. C. Byrd, J. R. Brown, O. 'brien, S. Barrientos, J. C. Kay et al., Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia, N Engl J Med, vol.371, pp.213-236, 2014.

M. Hallek, N. E. Kay, A. Osterborg, A. A. Chanan-khan, M. Mahler et al., The HELIOS trial protocol: a Phase III study of ibrutinib in combination with bendamustine and rituximab in relapsed/refractory chronic lymphocytic leukemia, Future Oncol Lond Engl, pp.1-9, 2014.


R. R. Furman, J. P. Sharman, S. E. Coutre, B. D. Cheson, J. M. Pagel et al., Idelalisib and rituximab in relapsed chronic lymphocytic leukemia, N Engl J Med, vol.370, pp.997-1007, 2014.

R. H. Advani, J. J. Buggy, J. P. Sharman, S. M. Smith, T. E. Boyd et al., Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies, J Clin Oncol, vol.31, pp.88-94, 2013.

B. Y. Chang, M. M. Huang, M. Francesco, J. Chen, J. Sokolove et al., The Bruton tyrosine kinase inhibitor PCI-32765 ameliorates autoimmune arthritis by inhibition of multiple effector cells, Arthritis Res Ther, vol.13, p.115, 2011.


F. J. Hernandez-ilizaliturri, V. Jupudy, J. Ostberg, E. Oflazoglu, A. Huberman et al., Neutrophils contribute to the biological antitumor activity of rituximab in a non-Hodgkin's lymphoma severe combined immunodeficiency mouse model, Clin Cancer Res, vol.9, p.14676108, 2003.

G. Cartron, L. Zhao-yang, M. Baudard, T. Kanouni, V. Rouill-e et al., Granulocytemacrophage colony-stimulating factor potentiates rituximab in patients with relapsed follicular lymphoma: results of a phase II study, J Clin Oncol, vol.26, pp.2725-2756, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00276954

B. Cl-emenceau, C. , N. Gallot, G. Vivien, R. Gaschet et al., Antibody-dependent cellular cytotoxicity (ADCC) is mediated by genetically modified antigen-specific human T lymphocytes, Blood, vol.107, pp.4669-77, 2006.