, particular interest, published within the period of review, have been highlighted as: of special interest of outstanding interest

G. Nagel, Channelrhodopsin-2, a directly light-gated cation-selective membrane channel, Proc Natl Acad Sci U S A, vol.100, pp.13940-13945, 2003.

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, Millisecond-timescale, genetically targeted optical control of neural activity, Nat Neurosci, vol.8, pp.1263-1268, 2005.

E. S. Boyden, Optogenetics and the future of neuroscience, Nat Neurosci, vol.18, pp.1200-1201, 2015.

J. P. Rickgauer and D. W. Tank, Two-photon excitation of channelrhodopsin-2 at saturation, Proc Natl Acad Sci U S A, vol.106, pp.15025-15030, 2009.

, First demonstration of action potential generation in cultured neurons using 2P laser scanning and optogenetics

O. Yizhar, Neocortical excitation/inhibition balance in information processing and social dysfunction, Nature, vol.477, pp.171-178, 2011.

R. Prakash, Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation, Nat Methods, vol.9, pp.1171-1179, 2012.

, First demonstration of action potential generation in vivo using 2P laser scanning and optogenetics

A. M. Packer, Two-photon optogenetics of dendritic spines and neural circuits, Nat Methods, vol.9, pp.1171-1179, 2012.

A. M. Packer, L. E. Russell, and H. Dalgleish, First demonstration of in vivo 2P all-optical circuit manipulation combining spiral scanning of multiple holographic spots and Ca 2+ imaging, Nat Methods, vol.12, pp.140-146, 2015.

W. Yang, L. Carrillo-reid, Y. Bando, D. S. Peterka, and R. Yuste, Simultaneous two-photon optogenetics and imaging of cortical circuits in three dimensions, vol.7, p.32671, 2018.

, A recent study demonstrating 3D all-optical investigation in vivo by using the hybrid illumination method for optogenetic activation

J. E. Curtis, B. A. Koss, and D. G. Grier, Dynamic holographic optical tweezers, Opt Commun, vol.207, pp.169-175, 2002.

, Glü ckstad J: Phase contrast image synthesis, Opt Commun, vol.130, pp.225-230, 1996.

C. Lutz, Holographic photolysis of caged neurotransmitters, Nat Methods, vol.5, pp.821-827, 2008.
DOI : 10.1038/nmeth.1241

URL : http://europepmc.org/articles/pmc2711023?pdf=render

, First demonstration of holographic light shaping for neuronal activation using 1P glutamate uncaging in brain slices

E. Papagiakoumou, V. De-sars, D. Oron, and V. Emiliani, Patterned twophoton illumination by spatiotemporal shaping of ultrashort pulses, Opt Express, vol.16, pp.22039-22047, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01963248

, First demonstration of temporally-focused arbitrary light shaping, by combining phase modulation of light with temporal focusing

D. Oron, E. Tal, and Y. Silberberg, Scanningless depth-resolved microscopy, Opt Express, vol.13, pp.1468-1476, 2005.
DOI : 10.1364/opex.13.001468

G. Zhu, J. Van-howe, M. Durst, W. Zipfel, and C. Xu, Simultaneous spatial and temporal focusing of femtosecond pulses, Opt Express, vol.13, pp.2153-2159, 2005.
DOI : 10.1109/cleo.2005.202174

E. Papagiakoumou, V. De-sars, V. Emiliani, and D. Oron, Temporal focusing with spatially modulated excitation, Opt Express, vol.17, pp.5391-5401, 2009.
DOI : 10.1364/oe.17.005391

URL : https://hal.archives-ouvertes.fr/hal-01963255

E. Papagiakoumou, Scanless two-photon excitation of channelrhodopsin-2, Nat Methods, vol.7, pp.848-854, 2010.

V. R. Daria, C. Stricker, R. Bowman, S. Redman, and H. A. Bachor, Arbitrary multisite two-photon excitation in four dimensions, Appl Phys Lett, vol.95, p.93701, 2009.
DOI : 10.1063/1.3216581

URL : https://aip.scitation.org/doi/pdf/10.1063/1.3216581

R. W. Gerchberg and W. O. Saxton, A pratical algorithm for the determination of the phase from image and diffraction pictures, Optik (Stuttg), vol.35, pp.237-246, 1972.

R. Piestun, B. Spektor, and J. Shamir, Wave fields in three dimensions: analysis and synthesis, J Opt Soc Am A, vol.13, p.1837, 1996.
DOI : 10.1364/josaa.13.001837

T. Haist, M. Schö-nleber, and H. Tiziani, Computer-generated holograms from 3D-objects written on twisted-nematic liquid crystal displays, Opt Commun, vol.140, pp.299-308, 1997.
DOI : 10.1016/s0030-4018(97)00192-2

O. Hernandez, First demonstration of generation of multiple temporally-focused shapes at axially distinct planes by decoupling the lateral from the axial wavefront shaping, Nat Commun, vol.7, p.11928, 2016.

M. Dal-maschio, J. C. Donovan, T. O. Helmbrecht, and H. Baier, Linking neurons to network function and behavior by two-photon holographic optogenetics and volumetric imaging, Neuron, vol.94, pp.774-789, 2017.

, First demonstration of all-optical neuronal circuits manipulation using 2P 3D-CGH and 2P Ca 2+ imaging in the zebrafish larvae

E. Papagiakoumou, Two-photon optogenetics by computer-generated holography, Optogenetics: A Roadmap, Neuromethods, vol.133, pp.175-197
DOI : 10.1007/978-1-4939-7417-7_10

N. Accanto, First demonstration of volumetric multiplexing of temporally-focused shapes generated with static and dynamic CGH, 2017.

M. A. Go, P. Ng, H. A. Bachor, and V. R. Daria, Optimal complex field holographic projection, Opt Lett, vol.36, pp.3073-3075, 2011.
DOI : 10.1364/ol.36.003073

, Bañ as A, Glü ckstad J: Holo-GPC: holographic generalized phase contrast, Opt Commun, vol.392, pp.190-195, 2017.

, First demonstration of Holo-GPC, enabling to create 3D replicas of a GPC spot via CGH

B. Sun, Four-dimensional light shaping: manipulating ultrafast spatio-temporal foci in space and time, vol.2017, pp.1-14

, First demonstration of lateral and axial multiplexing of a low-NA temporally-focused Gaussian beam via CGH

N. M. Pegard, I. Oldenburg, S. Sridharan, L. Walller, and H. Adesnik, First demonstration of 3D volumetric projection of hundreds of low-NA temporally focused Gaussian beams via CGH, Nat Commun, vol.8, p.1228, 2017.

J. L. Boulnois, Photophysical processes in recent medical laser developments: a review, Lasers Med Sci, vol.1, pp.47-66, 1986.

H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, Ca 2+ fluorescence imaging with pico-and femtosecond two-photon excitation: signal and photodamage, Biophys J, vol.77, pp.2226-2236, 1999.

A. Hopt and E. Neher, Highly nonlinear photodamage in two-photon fluorescence microscopy, Biophys J, vol.80, pp.2029-2036, 2001.

E. Chaigneau, Two-photon holographic stimulation of ReaChR, Front Cell Neurosci, vol.10, p.234, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01963760

, First demonstration of in vitro 2P activation of the opsin ReaChR and of 2P optogenetics activation using a low-repetition rate fiber laser

O. A. Shemesh, First demonstration of in vitro optical control of spiking activity of a single and multiple neurons with sub-millisecond jitter and single cell resolution using somatic-CoChR and temporally-focused CGH, Nat Neurosci, vol.20, pp.1796-1806, 2017.

W. Denk, J. H. Strickler, and W. W. Webb, Two-photon laser scanning fluorescence microscopy, Science, vol.248, pp.73-76, 1990.

F. Schneider, C. Grimm, and P. Hegemann, Biophysics of channelrhodopsin, Annu Rev Biophys, vol.44, pp.167-186, 2015.

J. Mattis, Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins, Nat Methods, vol.9, pp.159-172, 2011.

N. C. Klapoetke, Independent optical excitation of distinct neural populations, Nat Methods, vol.11, pp.338-346, 2014.

, First demonstration and characterization of several efficient variants of ChR such as Chronos, CoChR, Chrimson using 1P wide-field illumination

K. Nikolic, P. Degenaar, and C. Toumazou, Modeling and engineering aspects of ChannelRhodopsin2 system for neural photostimulation, Annual International Conference of the IEEE Engineering in Medicine and Biology-Proceedings, pp.1626-1629, 2006.

P. Hegemann, S. Ehlenbeck, and D. Gradmann, Multiple photocycles of channelrhodopsin, Biophys J, vol.89, pp.3911-3918, 2005.

K. Nikolic, Photocycles of channelrhodopsin-2, Photochem Photobiol, vol.85, pp.400-411, 2009.

N. Grossman, The spatial pattern of light determines the kinetics and modulates backpropagation of optogenetic action potentials, J Comput Neurosci, vol.2, 2012.

E. Ronzitti, Sub-millisecond optogenetic control of neuronal firing with two-photon holographic photoactivation of Chronos, J Neurosci, vol.37, pp.10679-10689, 2017.

, First demonstration of in vitro 2P activation of the opsin Chronos and CoChR, and first demonstration of optically induced fast spiking (100 Hz) train activation using 2P illumination

J. Y. Lin, P. M. Knutsen, A. Muller, D. Kleinfeld, and R. Y. Tsien, ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation, Nat Neurosci, vol.16, pp.1499-1508, 2013.

, First demonstration and characterization of the opsin ReaChR using 1P wide field illumination

R. Conti, O. Assayag, D. Sars, V. Guillon, M. Emiliani et al., Computer generated holography with intensity-graded patterns, Front Cell Neurosci, vol.10, p.236, 2016.

. Chen-i-w, First demonstration of optical control of neuronal activity in vivo with millisecond latency and sub-millisecond jitter using CGH and temporal focusing for opsins with different channel kinetics, vol.2017, pp.1-21

L. Madisen, A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing, Nat Neurosci, vol.15, pp.793-802, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00701167

B. R. Rost, F. Schneider-warme, D. Schmitz, and P. Hegemann, Optogenetic tools for subcellular applications in neuroscience, vol.96, pp.572-603, 2017.

D. Fö-rster, M. D. Maschio, E. Laurell, and H. Baier, An optogenetic toolbox for unbiased discovery of functionally connected cells in neural circuits, Nat Commun, vol.8, p.116, 2017.

C. Moretti, A. Antonini, S. Bovetti, C. Liberale, and T. Fellin, Scanless functional imaging of hippocampal networks using patterned two-photon illumination through GRIN lenses, Biomed Opt Express, vol.7, p.3958, 2016.

V. Szabo, C. Ventalon, D. Sars, V. Bradley, J. Emiliani et al., Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope, Neuron, vol.84, pp.1157-1169, 2014.

N. G. Horton, In vivo three-photon microscopy of subcortical structures within an intact mouse brain, Nat Photon, vol.7, pp.205-209, 2013.

C. J. Rowlands, Wide-field three-photon excitation in biological samples, Light Sci Appl, vol.6, p.16255, 2016.

T. Chen, Ultrasensitive fluorescent proteins for imaging neuronal activity, Nature, vol.499, pp.295-300, 2013.

H. Dana, Sensitive red protein calcium indicators for imaging neural activity. eLife, vol.5, pp.1-24, 2016.

A. Forli, Two-Photon Bidirectional Control and Imaging of Neuronal Excitability with High Spatial Resolution In Vivo, Cell Rep, vol.22, pp.2809-2817, 2018.

, First demonstration of all-optical neuronal network manipulation using holographic activation of blue shifted opsins and 2P imaging with red Ca 2 + indicators