R. Li and R. D. Weisel, Cardiac Regeneration and Repair, 2014.

A. Antonic, E. S. Sena, and J. S. Lees, Stem cell transplantation in traumatic spinal cord injury: a systematic review and metaanalysis of animal studies, PLoS Biol, vol.11, p.1001738, 2013.

G. A. Norambuena, M. Khoury, and C. Jorgensen, Mesenchymal stem cells in osteoarticular pediatric diseases: An update, Pediatr Res, vol.71, pp.452-458, 2012.

C. Jorgensen and D. Noël, Mesenchymal stem cells in osteoarticular diseases, Regen Med, vol.6, pp.44-51, 2011.

S. H. Ranganath, O. Levy, and M. S. Inamdar, Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease, Cell Stem Cell, vol.10, pp.244-258, 2012.

E. Eggenhofer, F. Luk, and M. H. Dahlke, The life and fate of mesenchymal stem cells, Front Immunol, vol.5, p.148, 2014.

A. M. Hocking and N. S. Gibran, Mesenchymal stem cells: Paracrine signaling and differentiation during cutaneous wound repair, Exp Cell Res, vol.316, pp.2213-2219, 2010.

S. Kanki, V. F. Segers, and W. Wu, Stromal cell-derived factor-1 retention and cardioprotection for ischemic myocardium, Circ Heart Fail, vol.4, pp.509-518, 2011.

L. Timmers, S. K. Lim, and I. E. Hoefer, Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction, Stem Cell Res (Amst), vol.6, pp.206-214, 2011.

L. Chen, A. Mizutani, and T. Kasai, Mouse induced pluripotent stem cell microenvironment generates epithelial-mesenchymal transition in mouse Lewis lung cancer cells, Am J Cancer Res, vol.4, pp.80-88, 2014.

Y. Ando, K. Matsubara, and J. Ishikawa, Stem cell-conditioned medium accelerates distraction osteogenesis through multiple regenerative mechanisms, Bone, vol.61, pp.82-90, 2014.

I. Chimenti, R. R. Smith, and T. S. Li, Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice, Circ Res, vol.106, pp.971-980, 2010.

I. Rosová, M. Dao, and B. Capoccia, Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells, STEM CELLS, vol.26, pp.2173-2182, 2008.

D. 'ippolito, G. Diabira, S. Howard, and G. A. , Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells, Bone, vol.39, pp.513-522, 2006.

W. L. Grayson, F. Zhao, and B. Bunnell, Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells

, Biochem Biophys Res Commun, vol.358, pp.948-953, 2007.

C. Fehrer, R. Brunauer, and G. Laschober, Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan, Aging Cell, vol.6, pp.745-757, 2007.

C. Holzwarth, M. Vaegler, and F. Gieseke, Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells, BMC Cell Biol, vol.11, p.11, 2010.

E. Potier, E. Ferreira, and R. Andriamanalijaona, Hypoxia affects mesenchymal stromal cell osteogenic differentiation and angiogenic factor expression, Bone, vol.40, pp.1078-1087, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01758625

B. Annabi, Y. T. Lee, and S. Turcotte, Hypoxia promotes murine bone-marrow-derived stromal cell migration and tube formation, STEM CELLS, vol.21, pp.337-347, 2003.

M. Gnecchi and L. G. Melo, Bone marrowderived mesenchymal stem cells: Isolation, expansion, characterization, viral transduction, and production of conditioned medium, Methods Mol Biol, vol.482, pp.281-294, 2009.

F. Zemani, D. Benisvy, and I. Galy-fauroux,

, Low-molecular-weight fucoidan enhances the proangiogenic phenotype of endothelial progenitor cells, Biochem Pharmacol, vol.70, pp.1167-1175, 2005.

J. Paquet, J. C. Goebel, and C. Delauney, Cytokines profiling by multiplex analysis in experimental arthritis: Which pathophysiological relevance for articular versus systemic mediators?, Arthritis Res Ther, vol.14, p.60, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01715286

A. Bronckaers, P. Hilkens, and W. Martens, Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis, Pharmacol Ther, vol.143, pp.181-196, 2014.

K. English, Mechanisms of mesenchymal stromal cell immunomodulation, Immunol Cell Biol, vol.91, pp.19-26, 2013.

M. Maumus, C. Jorgensen, and D. Noël, Mesenchymal stem cells in regenerative medicine applied to rheumatic diseases: Role of secretome and exosomes, Biochimie, vol.95, pp.2229-2234, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00832507

R. A. Boomsma and D. L. Geenen, Mesenchymal stem cells secrete multiple cytokines that promote angiogenesis and have contrasting effects on chemotaxis and apoptosis, PLoS One, vol.7, p.35685, 2012.

G. Maguire and P. Friedman, The systems biology of stem cell released molecules-based therapeutics, ISRN Stem Cells, p.784541, 2013.

, Oxygen Tension and Mesenchymal Stem Cell Secretome ©AlphaMed Press 2015 STEM CELLS TRANSLATIONAL MEDICINE

X. M. Xu, J. Wang, and X. Z. , Chaperonins facilitate KNOTTED1 cell-to-cell trafficking and stem cell function, Science, vol.333, pp.1141-1144, 2011.

R. Estrada, N. Li, and H. Sarojini, Secretome from mesenchymal stem cells induces angiogenesis via Cyr61, J Cell Physiol, vol.219, pp.563-571, 2009.

T. Iwase, N. Nagaya, and T. Fujii, Comparison of angiogenic potency between mesenchymal stem cells and mononuclear cells in a rat model of hindlimb ischemia, Cardiovasc Res, vol.66, pp.543-551, 2005.

M. Presta, G. Andrés, and D. Leali, Inflammatory cells and chemokines sustain FGF2induced angiogenesis

, Eur Cytokine Netw, vol.20, pp.39-50, 2009.

M. E. Bernardo and W. E. Fibbe, Mesenchymal stromal cells: Sensors and switchers of inflammation, Cell Stem Cell, vol.13, pp.392-402, 2013.

G. W. Roddy, J. Y. Oh, and R. H. Lee, Action at a distance: Systemically administered adult stem/progenitor cells (MSCs) reduce inflammatory damage to the cornea without engraftment and primarily by secretion of TNF-a stimulated gene/protein 6, STEM CELLS, vol.29, pp.1572-1579, 2011.

R. S. Waterman, S. L. Tomchuck, and S. L. Henkle, A new mesenchymal stem cell (MSC) paradigm: Polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype, PLoS One, vol.5, p.10088, 2010.

R. S. Waterman, S. L. Henkle, and A. M. Betancourt, Mesenchymal stem cell 1 (MSC1)-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis, PLoS One, vol.7, p.45590, 2012.

J. C. Estrada, C. Albo, and A. Benguría, Culture of human mesenchymal stem cells at low oxygen tension improves growth and genetic stability by activating glycolysis, Cell Death Differ, vol.19, pp.743-755, 2012.

L. Chen, Y. Xu, and J. Zhao, Conditioned medium from hypoxic bone marrow-derived mesenchymal stem cells enhances wound healing in mice, PLoS One, vol.9, p.96161, 2014.

E. K. Jun, Q. Zhang, and B. S. Yoon, Hypoxic conditioned medium from human amniotic fluid-derived mesenchymal stem cells accelerates skin wound healing through TGF-b/SMAD2 and PI3K/Akt pathways, Int J Mol Sci, vol.15, pp.605-628, 2014.

U. Cheema, R. A. Brown, and B. Alp, Spatially defined oxygen gradients and vascular endothelial growth factor expression in an engineered 3D cell model, Cell Mol Life Sci, vol.65, pp.177-186, 2008.

C. Lu, M. Rollins, and H. Hou, Tibial fracture decreases oxygen levels at the site of injury

, Iowa Orthop J, vol.28, pp.14-21, 2008.

C. T. Brighton and A. G. Krebs, Oxygen tension of nonunion of fractured femurs in the rabbit, Surg Gynecol Obstet, vol.135, pp.379-385, 1972.

E. Bland, D. Dréaudr´dréau, and K. Burg, Overcoming hypoxia to improve tissue-engineering approaches to regenerative medicine, J Tissue Eng Regen Med, vol.7, pp.505-514, 2013.

P. Becquart, A. Cambon-binder, and L. E. Monfoulet, Ischemia is the prime but not the only cause of human multipotent stromal cell death in tissue-engineered constructs in vivo, Tissue Eng Part A, vol.18, pp.2084-2094, 2012.

, See www.StemCellsTM.com for supporting information available online

. Paquet and M. Deschepper,