B. A. Golomb, T. T. Dang, and M. H. Criqui, Peripheral arterial disease: Morbidity and mortality implications, Circulation, vol.114, pp.688-699, 2006.

L. Norgren, W. R. Hiatt, J. A. Dormandy, M. R. Nehler, K. A. Harris et al., TASC II Working Group Inter-society consensus for the management of peripheral arterial disease, Int. Angiol. J. Int. Union Angiol, vol.26, pp.81-157, 2007.

M. Shanmugasundaram, V. K. Ram, U. C. Luft, M. Szerlip, and J. S. Alpert, Peripheral arterial disease-What do we need to know?, Clin. Cardiol, vol.34, pp.478-482, 2011.

F. G. Fowkes, D. Rudan, I. Rudan, V. Aboyans, J. O. Denenberg et al., Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: A systematic review and analysis, Lancet, vol.382, pp.1329-1340, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00925590

A. Rastan, H. Krankenberg, I. Baumgartner, E. Blessing, S. Müller-hülsbeck et al., Stent Placement vs. Balloon Angioplasty for Popliteal Artery Treatment: Two-Year Results of a Prospective, Multicenter, Randomized Trial, J. Endovasc. Ther. Off. J. Int. Soc. Endovasc. Spec, vol.22, pp.22-27, 2015.

C. Varol, A. Mildner, S. Jung, and . Macrophages, Development and tissue specialization, Annu. Rev. Immunol, vol.33, pp.643-675, 2015.

K. L. Mcginigle, C. A. Kalbaugh, and W. A. Marston, Living in a medically underserved county is an independent risk factor for major limb amputation, J. Vasc. Surg, vol.59, pp.737-741, 2014.

J. F. Lau, M. D. Weinberg, and J. W. Olin, Peripheral artery disease. Part 1: Clinical evaluation and noninvasive diagnosis, Nat. Rev. Cardiol, vol.8, pp.405-418, 2011.

D. Aerden, D. Massaad, K. Kemp, F. Van-tussenbroek, E. Debing et al., The ankle-brachial index and the diabetic foot: A troublesome marriage, Ann. Vasc. Surg, vol.25, pp.770-777, 2011.

M. D. Weinberg, J. F. Lau, K. Rosenfield, and J. W. Olin, Peripheral artery disease. Part 2: Medical and endovascular treatment, Nat. Rev. Cardiol, vol.8, pp.429-441, 2011.

S. Novo, G. Coppola, and G. Milio, Critical limb ischemia: Definition and natural history, Curr. Drug Targets Cardiovasc. Haematol. Disord, vol.4, pp.219-225, 2004.

V. Bertelè, M. C. Roncaglioni, J. Pangrazzi, E. Terzian, and E. G. Tognoni, Clinical outcome and its predictors in 1560 patients with critical leg ischaemia. Chronic Critical Leg Ischaemia Group, Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg, vol.18, pp.401-410, 1999.

I. Baumgartner, N. Chronos, A. Comerota, T. Henry, J. Pasquet et al., Local gene transfer and expression following intramuscular administration of FGF-1 plasmid DNA in patients with critical limb ischemia, Mol. Ther. J. Am. Soc. Gene Ther, vol.17, pp.914-921, 2009.

W. R. Hiatt, A. T. Hirsch, M. A. Creager, S. Rajagopalan, E. R. Mohler et al., Effect of niacin ER/lovastatin on claudication symptoms in patients with peripheral artery disease, Vasc. Med. Lond. Engl, vol.15, pp.171-179, 2010.

S. Nikol, I. Baumgartner, E. Van-belle, C. Diehm, A. Visoná et al., TALISMAN 201 investigators Therapeutic angiogenesis with intramuscular NV1FGF improves amputation-free survival in patients with critical limb ischemia, Mol. Ther. J. Am. Soc. Gene Ther, vol.16, pp.972-978, 2008.

J. Belch, W. R. Hiatt, I. Baumgartner, I. V. Driver, S. Nikol et al., TAMARIS Committees and Investigators Effect of fibroblast growth factor NV1FGF on amputation and death: A randomised placebo-controlled trial of gene therapy in critical limb ischaemia, Lancet, vol.377, pp.1929-1937, 2011.

R. J. Lederman, F. O. Mendelsohn, R. D. Anderson, J. F. Saucedo, A. N. Tenaglia et al., TRAFFIC Investigators Therapeutic angiogenesis with recombinant fibroblast growth factor-2 for intermittent claudication (the TRAFFIC study): A randomised trial, Lancet, vol.359, pp.2053-2058, 2002.

S. Rajagopalan, E. R. Mohler, R. J. Lederman, F. O. Mendelsohn, J. F. Saucedo et al., Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: A phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication, Circulation, vol.108, pp.1933-1938, 2003.

E. Tateishi-yuyama, H. Matsubara, T. Murohara, U. Ikeda, S. Shintani et al., Therapeutic Angiogenesis using Cell Transplantation (TACT) Study Investigators Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: A pilot study and a randomised controlled trial, Lancet, vol.360, pp.427-435, 2002.

A. Ishida, Y. Ohya, H. Sakuda, K. Ohshiro, Y. Higashiuesato et al., Autologous peripheral blood mononuclear cell implantation for patients with peripheral arterial disease improves limb ischemia, Circ. J. Off. J. Jpn. Circ. Soc, vol.69, pp.1260-1265, 2005.

P. Huang, S. Li, M. Han, Z. Xiao, R. Yang et al., Autologous transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells improves critical limb ischemia in diabetes, Diabetes Care, vol.28, pp.2155-2160, 2005.

G. P. Fadini, C. Agostini, and A. Avogaro, Autologous stem cell therapy for peripheral arterial disease meta-analysis and systematic review of the literature, Atherosclerosis, vol.209, pp.10-17, 2010.

K. Moazzami, R. Majdzadeh, and S. Nedjat, Local intramuscular transplantation of autologous mononuclear cells for critical lower limb ischaemia, Cochrane Database Syst. Rev, vol.12, p.8347, 2011.

J. Silvestre, D. M. Smadja, and B. I. Lévy, Postischemic revascularization: From cellular and molecular mechanisms to clinical applications, Physiol. Rev, vol.93, pp.1743-1802, 2013.

D. Magri, P. Vasilas, A. Muto, T. N. Fitzgerald, T. T. Fancher et al., Elevated monocytes in patients with critical limb ischemia diminish after bypass surgery, J. Surg. Res, vol.167, pp.140-150, 2011.

B. J. Capoccia, R. M. Shepherd, and D. C. Link, G-CSF and AMD3100 mobilize monocytes into the blood that stimulate angiogenesis in vivo through a paracrine mechanism, Blood, vol.108, pp.2438-2445, 2006.

M. Heil, T. Ziegelhoeffer, F. Pipp, S. Kostin, S. Martin et al., Blood monocyte concentration is critical for enhancement of collateral artery growth, Am. J. Physiol. Heart Circ. Physiol, vol.283, pp.2411-2419, 2002.

M. Heil, T. Ziegelhoeffer, S. Wagner, B. Fernández, A. Helisch et al., Collateral artery growth (arteriogenesis) after experimental arterial occlusion is impaired in mice lacking CC-chemokine receptor-2, Circ. Res, vol.94, pp.671-677, 2004.

M. Voskuil, N. Van-royen, I. E. Hoefer, R. Seidler, B. D. Guth et al., Modulation of collateral artery growth in a porcine hindlimb ligation model using MCP-1, Am. J. Physiol. Heart Circ. Physiol, vol.284, pp.1422-1428, 2003.

G. Sarlon, F. Zemani, L. David, J. P. Duong-van-huyen, B. Dizier et al., Therapeutic effect of fucoidan-stimulated endothelial colony-forming cells in peripheral ischemia, J. Thromb. Haemost. JTH, vol.10, pp.38-48, 2012.

F. Zemani, J. Silvestre, F. Fauvel-lafeve, A. Bruel, J. Vilar et al., Ex vivo priming of endothelial progenitor cells with SDF-1 before transplantation could increase their proangiogenic potential, Arterioscler. Thromb. Vasc. Biol, vol.28, pp.644-650, 2008.

C. Boisson-vidal, F. Zemani, G. Caligiuri, I. Galy-fauroux, S. Colliec-jouault et al., Neoangiogenesis induced by progenitor endothelial cells: Effect of fucoidan from marine algae, Cardiovasc. Hematol. Agents Med. Chem, vol.5, pp.67-77, 2007.

C. Luyt, A. Meddahi-pellé, B. Ho-tin-noe, S. Colliec-jouault, J. Guezennec et al., Low-molecular-weight fucoidan promotes therapeutic revascularization in a rat model of critical hindlimb ischemia, J. Pharmacol. Exp. Ther, vol.305, pp.24-30, 2003.

M. Nahrendorf, F. K. Swirski, E. Aikawa, L. Stangenberg, T. Wurdinger et al., The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions, J. Exp. Med, vol.204, pp.3037-3047, 2007.

F. Geissmann, S. Jung, and D. R. Littman, Blood monocytes consist of two principal subsets with distinct migratory properties, Immunity, vol.19, pp.71-82, 2003.

J. M. Hartney, J. Brown, H. W. Chu, L. Y. Chang, R. Pelanda et al., Arhgef1 regulates alpha5beta1 integrin-mediated matrix metalloproteinase expression and is required for homeostatic lung immunity, Am. J. Pathol, vol.176, pp.1157-1168, 2010.

S. Nourshargh and R. Alon, Leukocyte migration into inflamed tissues, Immunity, vol.41, pp.694-707, 2014.

C. E. Bergmann, I. E. Hoefer, B. Meder, H. Roth, N. Van-royen et al., Arteriogenesis depends on circulating monocytes and macrophage accumulation and is severely depressed in op/op mice, J. Leukoc. Biol, vol.80, pp.59-65, 2006.

M. Arras, W. D. Ito, D. Scholz, B. Winkler, J. Schaper et al., Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb, J. Clin. Invest, vol.101, pp.40-50, 1998.

R. A. Wolff, J. J. Tomas, D. A. Hullett, V. E. Stark, N. Van-rooijen et al., Macrophage depletion reduces monocyte chemotactic protein-1 and transforming growth factor-beta1 in healing rat vein grafts, J. Vasc. Surg, vol.39, pp.878-888, 2004.

A. Schepers, D. Eefting, P. I. Bonta, J. M. Grimbergen, M. R. De-vries et al., Anti-MCP-1 gene therapy inhibits vascular smooth muscle cells proliferation and attenuates vein graft thickening both in vitro and in vivo, Arterioscler. Thromb. Vasc. Biol, vol.26, pp.2063-2069, 2006.

H. Tatewaki, K. Egashira, S. Kimura, T. Nishida, S. Morita et al., Blockade of monocyte chemoattractant protein-1 by adenoviral gene transfer inhibits experimental vein graft neointimal formation, J. Vasc. Surg, vol.45, pp.1236-1243, 2007.

F. Haroun-bouhedja, F. Lindenmeyer, H. Lu, C. Soria, J. Jozefonvicz et al., In vitro effects of fucans on MDA-MB231 tumor cell adhesion and invasion, Anticancer Res, vol.22, pp.2285-2292, 2002.

R. Sadir, F. Baleux, A. Grosdidier, A. Imberty, and H. Lortat-jacob, Characterization of the stromal cell-derived factor-1alpha-heparin complex, J. Biol. Chem, vol.276, pp.8288-8296, 2001.
URL : https://hal.archives-ouvertes.fr/pasteur-00166877

H. Thorlacius, B. Vollmar, U. T. Seyfert, D. Vestweber, and M. D. Menger, The polysaccharide fucoidan inhibits microvascular thrombus formation independently from P-and L-selectin function in vivo, Eur. J. Clin. Invest, vol.30, pp.804-810, 2000.

P. S. Frenette and L. Weiss, Sulfated glycans induce rapid hematopoietic progenitor cell mobilization: Evidence for selectin-dependent and independent mechanisms, Blood, vol.96, pp.2460-2468, 2000.

B. Cambien, M. Pomeranz, M. A. Millet, B. Rossi, and A. Schmid-alliana, Signal transduction involved in MCP-1-mediated monocytic transendothelial migration, Blood, vol.97, pp.359-366, 2001.

H. Ge, W. Yuan, J. Liu, Q. He, S. Ding et al., Functional Relevance of Protein Glycosylation to the Pro-Inflammatory Effects of Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) on Monocytes/Macrophages, PLoS ONE, vol.10, p.117463, 2015.

N. Ashida, H. Arai, M. Yamasaki, and T. Kita, Distinct signaling pathways for MCP-1-dependent integrin activation and chemotaxis, J. Biol. Chem, vol.276, pp.16555-16560, 2001.

I. D. Mcgilvray, V. Tsai, J. C. Marshall, A. P. Dackiw, and O. D. Rotstein, Monocyte adhesion and transmigration induce tissue factor expression: Role of the mitogen-activated protein kinases, Shock, vol.18, pp.51-57, 2002.

C. Liao, M. Ho, S. Liang, and C. Liang, Recombinant protein rVP1 upregulates BECN1-independent autophagy, MAPK1/3 phosphorylation and MMP9 activity via WIPI1/WIPI2 to promote macrophage migration, Autophagy, vol.9, pp.5-19, 2013.

J. Ye, Y. Li, K. Teruya, Y. Katakura, A. Ichikawa et al., Enzyme-digested Fucoidan Extracts Derived from Seaweed Mozuku of Cladosiphon novae-caledoniae kylin Inhibit Invasion and Angiogenesis of Tumor Cells, Cytotechnology, vol.47, pp.117-126, 2005.

H. Lee, J. Kim, and E. Kim, Fucoidan from Seaweed Fucus vesiculosus Inhibits Migration and Invasion of Human Lung Cancer Cell via PI3K-Akt-mTOR Pathways, PLoS ONE, vol.7, p.50624, 2012.

H. Teng, Y. Yang, H. Wei, Z. Liu, Z. Liu et al., Fucoidan Suppresses Hypoxia-Induced Lymphangiogenesis and Lymphatic Metastasis in Mouse Hepatocarcinoma, Mar. Drugs, vol.13, pp.3514-3530, 2015.

J. H. Fitton, Therapies from fucoidan; Multifunctional marine polymers, Mar. Drugs, vol.9, pp.1731-1760, 2011.

N. E. Ustyuzhanina, M. I. Bilan, N. A. Ushakova, A. I. Usov, M. V. Kiselevskiy et al., Fucoidans: Pro-or antiangiogenic agents?, Glycobiology, vol.24, pp.1265-1274, 2014.

K. Matsubara, C. Xue, X. Zhao, M. Mori, T. Sugawara et al., Effects of middle molecular weight fucoidans on in vitro and ex vivo angiogenesis of endothelial cells, Int. J. Mol. Med, vol.15, pp.695-699, 2005.

F. Zemani, D. Benisvy, I. Galy-fauroux, A. Lokajczyk, S. Colliec-jouault et al., Low-molecular-weight fucoidan enhances the proangiogenic phenotype of endothelial progenitor cells, Biochem. Pharmacol, vol.70, pp.1167-1175, 2005.

A. Nardella, F. Chaubet, C. Boisson-vidal, C. Blondin, P. Durand et al., Anticoagulant low molecular weight fucans produced by radical process and ion exchange chromatography of high molecular weight fucans extracted from the brown seaweed Ascophyllum nodosum, Carbohydr. Res, vol.289, pp.201-208, 1996.

B. Mulloy, C. Gee, S. F. Wheeler, R. Wait, E. Gray et al., Molecular weight measurements of low molecular weight heparins by gel permeation chromatography, Thromb. Haemost, vol.77, pp.668-674, 1997.