S. B. Charge and M. A. Rudnicki, Cellular and molecular regulation of muscle regeneration, Physiol. Rev, vol.84, pp.209-238, 2004.

C. A. Collins, Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche, Cell, vol.122, pp.289-301, 2005.

T. J. Hawke and D. J. Garry, Myogenic satellite cells: physiology to molecular biology, J. Appl. Physiol, vol.91, pp.534-551, 2001.

S. M. Abmayr and G. K. Pavlath, Myoblast fusion: lessons from flies and mice, Development, vol.139, pp.641-656, 2012.

K. Rochlin, S. Yu, S. Roy, and M. K. Baylies, Myoblast fusion: when it takes more to make one, Dev. Biol, vol.341, pp.66-83, 2010.

K. R. Doherty, Normal myoblast fusion requires myoferlin, Development, vol.132, pp.5565-5575, 2005.

K. M. Jansen and G. K. Pavlath, Mannose receptor regulates myoblast motility and muscle growth, J. Cell Biol, vol.174, pp.403-413, 2006.

N. L. Quach, S. Biressi, L. F. Reichardt, C. Keller, and T. A. Rando, Focal adhesion kinase signaling regulates the expression of caveolin 3 and beta1 integrin, genes essential for normal myoblast fusion, Mol. Biol. Cell, vol.20, pp.3422-3435, 2009.

L. Madaro, PKCtheta signaling is required for myoblast fusion by regulating the expression of caveolin-3 and beta1D integrin upstream focal adhesion kinase, Mol. Biol. Cell, vol.22, pp.1409-1419, 2011.

J. H. Shinn-thomas and W. Mohler, New insights into the mechanisms and roles of cell-cell fusion, Int. Rev. Cell Mol. Biol, vol.289, pp.149-209, 2011.

D. Duelli and Y. Lazebnik, Cell-to-cell fusion as a link between viruses and cancer, Nat. Rev. Cancer, vol.7, pp.968-976, 2007.

L. Naour, F. Rubinstein, E. Jasmin, C. Prenant, M. Boucheix et al., Severely reduced female fertility in CD9-deficient mice, Science, vol.287, pp.319-321, 2000.

E. Rubinstein, Reduced fertility of female mice lacking CD81, Dev. Biol, vol.290, pp.351-358, 2006.

F. Martin, Tetraspanins in viral infections: a fundamental role in viral biology?, J. Virol, vol.79, pp.10839-10851, 2005.

Y. Takeda, Tetraspanins CD9 and CD81 function to prevent the fusion of mononuclear phagocytes, J. Cell Biol, vol.161, pp.945-956, 2003.

S. Charrin, Lateral organization of membrane proteins: tetraspanins spin their web, Biochem. J, vol.420, pp.133-154, 2009.

M. Yanez-mo, O. Barreiro, M. Gordon-alonso, M. Sala-valdes, and F. Sanchez-madrid, Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes, Trends Cell Biol, vol.19, pp.434-446, 2009.

M. E. Hemler, Tetraspanin functions and associated microdomains, Nat. Rev. Mol. Cell Biol, vol.6, pp.801-811, 2005.

S. Charrin, The major CD9 and CD81 molecular partner: Identification and characterization of the complexes, J. Biol. Chem, vol.276, pp.14329-14337, 2001.

S. Charrin, EWI-2 is a new component of the tetraspanin web in hepatocytes and lymphoid cells, Biochem. J, vol.373, pp.409-421, 2003.

C. S. Stipp, T. V. Kolesnikova, and M. E. Hemler, EWI-2 Is a Major CD9 and CD81 Partner and Member of a Novel Ig Protein Subfamily, J. Biol. Chem, vol.276, pp.40545-40554, 2001.

C. S. Stipp, D. Orlicky, M. E. Hemler, . Fprp, and . Major, highly stoichiometric, highly specific CD81-and CD9-associated protein, J. Biol. Chem, vol.276, pp.4853-4862, 2001.

T. V. Kolesnikova, EWI-2 modulates lymphocyte integrin {alpha}4{beta}1 functions, Blood, vol.103, pp.3013-3019, 2003.
DOI : 10.1182/blood-2003-07-2201

URL : http://www.bloodjournal.org/content/103/8/3013.full.pdf

C. S. Stipp, T. V. Kolesnikova, and M. E. Hemler, EWI-2 regulates alpha3beta1 integrin-dependent cell functions on laminin-5, J. Cell Biol, vol.163, pp.1167-1177, 2003.

S. Charrin, The Ig domain protein CD9P-1 down-regulates CD81 ability to support Plasmodium yoelii infection, J. Biol. Chem, vol.284, pp.31572-31578, 2009.

V. Rocha-perugini, The CD81 partner EWI-2wint inhibits hepatitis C virus entry, PLoS ONE, vol.3, p.1866, 2008.

I. Tachibana and M. E. Hemler, Role of transmembrane 4 superfamily (TM4SF) proteins CD9 and CD81 in muscle cell fusion and myotube maintenance, J. Cell Biol, vol.146, pp.893-904, 1999.

R. Sambasivan, Distinct regulatory cascades govern extraocular and pharyngeal arch muscle progenitor cell fates, Dev. Cell, vol.16, pp.810-821, 2009.
DOI : 10.1016/j.devcel.2009.07.007

URL : https://hal.archives-ouvertes.fr/hal-00428975

G. Ferrari, A. Stornaiuolo, and F. Mavilio, Failure to correct murine muscular dystrophy, Nature, vol.411, pp.1014-1015, 2001.

M. Gautel, The sarcomeric cytoskeleton: who picks up the strain?, Curr. Opin. Cell Biol, vol.23, pp.39-46, 2011.

R. S. O'connor, C. M. Steeds, R. W. Wiseman, and G. K. Pavlath, Phosphocreatine as an energy source for actin cytoskeletal rearrangements during myoblast fusion, J. Physiol, vol.586, pp.2841-2853, 2008.

S. J. Nowak, P. C. Nahirney, A. K. Hadjantonakis, and M. Baylies, Nap1mediated actin remodeling is essential for mammalian myoblast fusion, J. Cell Sci, vol.122, pp.3282-3293, 2009.

T. A. Robertson, M. D. Grounds, C. A. Mitchell, and J. M. Papadimitriou, Fusion between myogenic cells in vivo: an ultrastructural study in regenerating murine skeletal muscle, J. Struct. Biol, vol.105, pp.170-182, 1990.

J. M. Schroder and R. D. Adams, The ultrastructural morphology of the muscle fiber in myotonic dystrophy, Acta Neuropathol, vol.10, pp.218-241, 1968.

D. L. Schotland, D. Spiro, and P. Carmel, Ultrastructural studies of ring fibers in human muscle disease, J Neuropathol. Exp. Neurol, vol.25, pp.431-442, 1966.

D. J. Orlicky and S. K. Nordeen, Cloning, sequencing and proposed structure for a prostaglandin F2 alpha receptor regulatory protein, Prostaglandins Leukot. Essent. Fatty Acids, vol.55, pp.261-268, 1996.

D. J. Orlicky, Negative regulatory activity of a prostaglandin F2 alpha receptor associated protein (FPRP), Prostaglandins Leukot. Essent. Fatty Acids, vol.54, pp.247-259, 1996.

V. Horsley and G. K. Pavlath, Prostaglandin F2(alpha) stimulates growth of skeletal muscle cells via an NFATC2-dependent pathway, J. Cell Biol, vol.161, pp.111-118, 2003.

I. H. Park and J. Chen, Mammalian target of rapamycin (mTOR) signaling is required for a late-stage fusion process during skeletal myotube maturation, J. Biol. Chem, vol.280, pp.32009-32017, 2005.

T. Wakabayashi, Analysis of the gamma-secretase interactome and validation of its association with tetraspanin-enriched microdomains, Nat. Cell Biol, vol.11, pp.1340-1346, 2009.

E. Vasyutina, D. C. Lenhard, and C. Birchmeier, Notch function in myogenesis, Cell Cycle, vol.6, pp.1451-1454, 2007.

R. Kopan and M. X. Ilagan, The canonical Notch signaling pathway: unfolding the activation mechanism, Cell, vol.137, pp.216-233, 2009.

M. Kitzmann, Inhibition of Notch signaling induces myotube hypertrophy by recruiting a subpopulation of reserve cells, J. Cell Physiol, vol.208, pp.538-548, 2006.

P. Mourikis, A critical requirement for notch signaling in maintenance of the quiescent skeletal muscle stem cell state, Stem Cells, vol.30, pp.243-252, 2012.

Z. Y. He, S. Gupta, D. Myles, and P. Primakoff, Loss of surface EWI-2 on CD9 null oocytes, Mol. Reprod. Dev, vol.76, pp.629-636, 2009.

N. Inoue, T. Nishikawa, M. Ikawa, and M. Okabe, Tetraspanin-interacting protein IGSF8 is dispensable for mouse fertility, Fertil. Steril, vol.98, pp.465-470, 2012.

, on the protection of animals used for scientific purposes. Pages L276/233-279, Official Journal of European Union, 2010.

H. T. Maecker and S. Levy, Normal lymphocyte development but delayed humoral immune response in CD81-null mice, J. Exp. Med, vol.185, pp.1505-1510, 1997.

T. A. Rando and H. M. Blau, Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy, J. Cell Biol, vol.125, pp.1275-1287, 1994.

O. Silvie, Expression of human CD81 differently affects host cell susceptibility to malaria sporozoites depending on the Plasmodium species, Cell Microbiol, vol.8, pp.1134-1146, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00180297

, Higher magnification is shown in right panel. (c) One month post injury CD81 staining of myofibers is strongly reduced. (d/e) Cryosections of 6 month old Mdx mouse TA stained with an anti-laminin (LM, green) and anti-CD81 (red) antibodies and analyzed by fluorescence microscopy (d) or an anti-embryonic Myosin Heavy Chain (eMyHC, green) and anti-CD9 (red) antibodies and analyzed by confocal fluorescence microscopy (e), Cryosection of mouse TA 4 day post notexin injection stained with an anti-CD9 (red) and an anti-laminin (LM, green) antibodies and analyzed by fluorescence microscopy. (b)