S. E. Eggener, K. Badani, and D. A. Barocas, Gleason 6 prostate cancer: translating biology into population health, J Urol, vol.194, pp.626-660, 2015.

L. P. Bokhorst, R. Valdagni, and A. Rannikko, A decade of active surveillance in the prias study: an update and evaluation of the criteria used to recommend a switch to active treatment, Eur Urol, vol.70, pp.954-60, 2016.

T. J. Wilt, Management of low risk and low PSA prostate cancer: long-term results from the prostate cancer intervention versus observation trial. Recent results, Cancer Res, vol.202, pp.149-69, 2014.

R. Rubin, Researchers look to MRI and biomarkers to help improve detection of aggressive prostate cancers, JAMA, vol.313, pp.654-660, 2015.

F. Bratan, E. Niaf, and C. Melodelima, Influence of imaging and histological factors on prostate cancer detection and localisation on multiparametric MRI: a prospective study, Eur Radiol, vol.23, pp.2019-2048, 2013.

B. Turkbey, H. Mani, and V. Shah, Multiparametric 3T prostate magnetic resonance imaging to detect cancer: histopathological correlation using prostatectomy specimens processed in customized magnetic resonance imaging based molds, J Urol, vol.186, pp.1818-1842, 2011.

J. D. Le, N. Tan, and E. Shkolyar, Multifocality and prostate cancer detection by multiparametric magnetic resonance imaging: correlation with whole-mount histopathology, Eur Urol, vol.67, pp.569-76, 2015.

M. Valerio, I. Donaldson, and M. Emberton, Detection of clinically significant prostate cancer using magnetic resonance imaging-ultrasound fusion targeted biopsy: a systematic review, Eur Urol, vol.68, pp.8-19, 2015.

I. G. Schoots, M. J. Roobol, D. Nieboer, C. H. Bangma, E. W. Steyerberg et al., Magnetic resonance imaging-targeted biopsy may enhance the diagnostic accuracy of significant prostate cancer detection compared to standard transrectal ultrasoundguided biopsy: a systematic review and meta-analysis, Eur Urol, vol.68, pp.438-50, 2015.

R. Rouviere, O. Puech, and P. , Current practice and access to prostate MR imaging in France, Diagn Interv Imaging, vol.97, pp.1125-1134, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01428880

O. Rouviere, Will all patients with suspicion of prostate cancer undergo multiparametric MRI before biopsy in the future?, Diagn Interv Imaging, vol.97, pp.389-91, 2016.

F. V. Mertan, M. D. Greer, and J. H. Shih, Prospective evaluation of the prostate imaging reporting and data system version 2 for prostate cancer detection, J Urol, vol.196, pp.690-696, 2016.

A. B. Rosenkrantz, S. Kim, and R. P. Lim, Prostate cancer localization using multiparametric MR imaging: comparison of prostate imaging reporting and data system (pi-rads) and likert scales, Radiology, vol.269, pp.482-92, 2013.

T. Vache, F. Bratan, F. Mege-lechevallier, S. Roche, M. Rabilloud et al., Characterization of prostate lesions as benign or malignant at multiparametric MR imaging: comparison of three scoring systems in patients treated with radical prostatectomy, Radiology, vol.272, pp.446-55, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02045543

A. B. Rosenkrantz, L. A. Ginocchio, and D. Cornfeld, Interobserver reproducibility of the pi-rads version 2 lexicon: a multicenter study of six experienced prostate radiologists, Radiology, vol.280, pp.793-804, 2016.

B. G. Muller, J. H. Shih, and S. Sankineni, Prostate cancer: interobserver agreement and accuracy with the revised prostate imaging reporting and data system at multiparametric MR imaging, Radiology, vol.277, pp.741-50, 2015.

C. Zhao, G. Gao, and D. Fang, The efficiency of multiparametric magnetic resonance imaging (mpMRI) using pi-rads version 2 in the diagnosis of clinically significant prostate cancer, Clin Imaging, vol.40, pp.885-893, 2016.

E. Niaf, C. Lartizien, and F. Bratan, Prostate focal peripheral zone lesions: characterization at multiparametric MR imaging-influence of a computer-aided diagnosis system, Radiology, vol.271, pp.761-770, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00977060

G. J. Litjens, J. O. Barentsz, N. Karssemeijer, and H. J. Huisman, Clinical evaluation of a computer-aided diagnosis system for determining cancer aggressiveness in prostate MRI, Eur Radiol, vol.25, pp.3187-99, 2015.

G. Lemaitre, R. Marti, J. Freixenet, J. C. Vilanova, P. M. Walker et al., Computer-aided detection and diagnosis for prostate cancer based on mono-and multiparametric MRI: a review, Comput Biol Med, vol.60, pp.8-31, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01235868

D. C. Sullivan, N. A. Obuchowski, and L. G. Kessler, Metrology standards for quantitative imaging biomarkers, Radiology, vol.277, pp.813-838, 2015.

T. L. Chenevert, D. I. Malyarenko, and D. Newitt, Errors in quantitative image analysis due to platform-dependent image scaling, Transl Oncol, vol.7, pp.65-71, 2014.

Y. Peng, Y. Jiang, T. Antic, M. L. Giger, S. E. Eggener et al., Validation of quantitative analysis of multiparametric prostate MR images for prostate cancer detection and aggressiveness assessment: a cross-imager study, Radiology, vol.271, pp.461-71, 2014.

A. Hoang-dinh, C. Melodelima, and R. Souchon, Quantitative analysis of prostate multiparametric MR images for detection of aggressive prostate cancer in the peripheral zone: a multiple imager study, Radiology, vol.280, pp.117-144, 2016.

I. Ocak, M. Bernardo, and G. Metzger, Dynamic contrastenhanced MRI of prostate cancer at 3T: a study of pharmacokinetic parameters, AJR Am J Roentgenol, vol.189, pp.849-58, 2007.

S. F. Riches, G. S. Payne, and V. A. Morgan, Multivariate modelling of prostate cancer combining magnetic resonance derived T2, diffusion, dynamic contrast-enhanced and spectroscopic parameters, Eur Radiol, vol.25, pp.1247-56, 2015.

M. Azahaf, M. Haberley, and N. Betrouni, Impact of arterial input function selection on the accuracy of dynamic contrast-enhanced MRI quantitative analysis for the diagnosis of clinically significant prostate cancer, J Magn Reson Imaging, vol.43, pp.737-786, 2016.

D. L. Langer, T. H. Van-der-kwast, and A. J. Evans, Prostate tissue composition and MR measurements: investigating the relationships between ADC, T2, k(trans), v(e), and corresponding histologic features, Radiology, vol.255, pp.485-94, 2010.

F. M. Fennessy, A. Fedorov, and T. Penzkofer, Quantitative pharmacokinetic analysis of prostate cancer DCE-MRI at 3T: comparison of two arterial input functions on cancer detection with digitized whole mount histopathological validation, Magn Reson Imaging, vol.33, pp.886-94, 2015.

R. Sanz-requena, J. M. Prats-montalban, and L. Marti-bonmati, Automatic individual arterial input functions calculated from PCA outperform manual and population-averaged approaches for the pharmacokinetic modeling of DCE-MR images, J Magn Reson Imaging, vol.42, pp.477-87, 2015.

R. Sanz-requena, L. Marti-bonmati, R. Perez-martinez, and G. Garciamarti, Dynamic contrast-enhanced case-control analysis in 3T

, MRI of prostate cancer can help to characterize tumor aggressiveness, Eur J Radiol, vol.85, pp.2119-2145, 2016.

R. Meng, S. D. Chang, E. C. Jones, S. L. Goldenberg, and P. Kozlowski, Comparison between population average and experimentally measured arterial input function in predicting biopsy results in prostate cancer, Acad Radiol, vol.17, pp.520-525, 2010.

E. Cho, D. J. Chung, and D. M. Yeo, Optimal cut-off value of perfusion parameters for diagnosing prostate cancer and for assessing aggressiveness associated with Gleason score, Clin Imaging, vol.39, pp.834-874, 2015.

A. M. Hotker, Y. Mazaheri, and O. Aras, Assessment of prostate cancer aggressiveness by use of the combination of quantitative DWI and dynamic contrast-enhanced MRI, AJR Am J Roentgenol, vol.206, pp.756-63, 2016.

M. O. Leach, B. Morgan, and P. S. Tofts, Imaging vascular function for early stage clinical trials using dynamic contrast-enhanced magnetic resonance imaging, Eur Radiol, vol.22, pp.1451-64, 2012.

W. Huang, Y. Chen, and A. Fedorov, The impact of arterial input function determination variations on prostate dynamic contrast-enhanced magnetic resonance imaging pharmacokinetic modeling: a multicenter data analysis challenge, Tomography, vol.2, pp.56-66, 2016.

L. Beuzit, P. A. Eliat, and V. Brun, Dynamic contrast-enhanced MRI: study of inter-software accuracy and reproducibility using simulated and clinical data, J Magn Reson Imaging, vol.43, pp.1288-300, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01255866

A. E. Othman, F. Falkner, and D. E. Kessler, Comparison of different population-averaged arterial input functions in dynamic contrast-enhanced MRI of the prostate: effects on pharmacokinetic parameters and their diagnostic performance, Magn Reson Imaging, vol.34, pp.496-501, 2016.

O. Akin, E. Sala, and C. S. Moskowitz, Transition zone prostate cancers: features, detection, localization, and staging at endorectal MR imaging, Radiology, vol.239, pp.784-92, 2006.

L. Lemaitre, P. Puech, and E. Poncelet, Dynamic contrastenhanced MRI of anterior prostate cancer: morphometric assessment and correlation with radical prostatectomy findings, Eur Radiol, vol.19, pp.470-80, 2009.

A. Oto, A. Kayhan, and Y. Jiang, Prostate cancer: differentiation of central gland cancer from benign prostatic hyperplasia by using diffusion-weighted and dynamic contrast-enhanced MR imaging, Radiology, vol.257, pp.715-738, 2010.

A. L. Chesnais, E. Niaf, and F. Bratan, Differentiation of transitional zone prostate cancer from benign hyperplasia nodules: evaluation of discriminant criteria at multiparametric MRI, Clin Radiol, vol.68, pp.323-353, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02168098

P. S. Tofts, G. Brix, and D. L. Buckley, Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols, J Magn Reson Imaging, vol.10, pp.223-255, 1999.

H. J. Weinmann, M. Laniado, and W. Mutzel, Pharmacokinetics of GdDTPA/dimeglumine after intravenous injection into healthy volunteers, Physiol Chem Phys Med NMR, vol.16, pp.167-72, 1984.

D. Edwards and J. J. Berry, The efficiency of simulation-based multiple comparisons, Biometrics, vol.43, pp.913-941, 1987.

T. Heye, M. S. Davenport, and J. J. Horvath, Reproducibility of dynamic contrast-enhanced MR imaging. Part I. Perfusion characteristics in the female pelvis by using multiple computer-aided diagnosis perfusion analysis solutions, Radiology, vol.266, pp.801-812, 2013.

P. Kozlowski, S. D. Chang, E. C. Jones, K. W. Berean, H. Chen et al., Combined diffusion-weighted and dynamic contrast-enhanced MRI for prostate cancer diagnosis-correlation with biopsy and histopathology, J Magn Reson Imaging, vol.24, pp.108-121, 2006.

M. Lowry, B. Zelhof, G. P. Liney, P. Gibbs, M. D. Pickles et al., Analysis of prostate DCE-MRI: comparison of fast exchange limit and fast exchange regimen pharmacokinetic models in the discrimination of malignant from normal tissue, Invest Radiol, vol.44, pp.577-84, 2009.

A. Oto, C. Yang, and A. Kayhan, Diffusion-weighted and dynamic contrast-enhanced MRI of prostate cancer: correlation of quantitative MR parameters with Gleason score and tumor angiogenesis, AJR Am J Roentgenol, vol.197, pp.1382-90, 2011.

P. Kozlowski, S. D. Chang, and R. Meng, Combined prostate diffusion tensor imaging and dynamic contrast-enhanced MRI at 3T-quantitative correlation with biopsy, Magn Reson Imaging, vol.28, pp.621-629, 2010.

R. Fusco, M. Sansone, and M. Petrillo, Multiparametric MRI for prostate cancer detection: preliminary results on quantitative analysis of dynamic contrast-enhanced imaging, diffusionweighted imaging and spectroscopy imaging, Magn Reson Imaging, vol.34, pp.839-884, 2016.

X. Li, E. B. Welch, and L. R. Arlinghaus, A novel AIF tracking method and comparison of DCE-MRI parameters using individual and population-based AIFs in human breast cancer, Phys Med Biol, vol.56, pp.5753-69, 2011.

A. R. Padhani, C. Hayes, S. Landau, and M. O. Leach, Reproducibility of quantitative dynamic MRI of normal human tissues, NMR Biomed, vol.15, pp.143-53, 2002.

D. Checkley, J. J. Tessier, J. Kendrew, J. C. Waterton, and S. R. Wedge, Use of dynamic contrast-enhanced MRI to evaluate acute treatment with ZD6474, a VEGF signalling inhibitor, in PC-3 prostate tumours, Br J Cancer, vol.89, pp.1889-95, 2003.

A. R. Padhani, C. J. Gapinski, and D. A. Macvicar, Dynamic contrastenhanced MRI of prostate cancer: correlation with morphology and tumour stage, histological grade and PSA, Clin Radiol, vol.55, pp.99-109, 2000.

H. P. Schlemmer, J. Merkle, and R. Grobholz, Can pre-operative contrast-enhanced dynamic MR imaging for prostate cancer predict microvessel density in prostatectomy specimens?, Eur Radiol, vol.14, pp.309-326, 2004.

Y. S. Sung, H. J. Kwon, and B. W. Park, Prostate cancer detection on dynamic contrast-enhanced MRI: computer-aided diagnosis versus single perfusion parameter maps, AJR Am J Roentgenol, vol.197, pp.1122-1131, 2011.