C. A. Fux, J. W. Costerton, P. S. Stewart, and P. Stoodley, Survival strategies of infectious biofilms, vol.13, pp.34-40, 2005.

H. Flemming, J. Wingender, U. Szewzyk, P. Steinberg, S. A. Rice et al., Biofilms: an emergent form of bacterial life, Nat. Rev. Microbiol, vol.14, pp.563-575, 2016.

J. W. Costerton, Bacterial biofilms: a common cause of persistent infections, Science, vol.284, pp.1318-1322, 1999.

P. S. Stewart, Diffusion in biofilms, J. Bacteriol, vol.185, pp.1485-1491, 2003.

K. Forier, K. Raemdonck, S. C. De-smedt, J. Demeester, T. Coenye et al., Lipid and polymer nanoparticles for drug delivery to bacterial biofilms, J. Control. Release, vol.190, pp.607-623, 2014.

, Antimicrobial resistance, vol.194, 2015.

D. I. Andersson, D. Hughes, and J. Z. Kubicek-sutherland, Mechanisms and consequences of bacterial resistance to antimicrobial peptides, Drug Resist. Updat, vol.26, pp.43-57, 2016.

H. Flemming and J. Wingender, The biofilm matrix, Nat. Rev. Microbiol, vol.8, pp.623-633, 2010.

M. Pasupuleti, A. Schmidtchen, and M. Malmsten, Antimicrobial peptides: key components of the innate immune system, Crit. Rev. Biotechnol, vol.32, pp.143-171, 2012.

S. Maria-neto, K. C. De-almeida, M. L. Macedo, and O. L. Franco, Understanding bacterial resistance to antimicrobial peptides: from the surface to deep inside, Biochim. Biophys. Acta Biomembr, pp.3078-3088, 2015.

H. S. Joo, C. I. Fu, and M. Otto, Bacterial strategies of resistance to antimicrobial peptides, Philos. Trans. R. Soc. B Biol. Sci, vol.371, 2016.

R. Nordström and M. Malmsten, Delivery systems for antimicrobial peptides, Adv. Colloid Interf. Sci, vol.242, pp.17-34, 2017.

W. Gao, S. Thamphiwatana, P. Angsantikul, and L. Zhang, Nanoparticle approaches against bacterial infections, Nanomed. Nanobiotechnol, vol.6, pp.532-547, 2014.

C. Valcourt, P. Saulnier, A. Umerska, M. P. Zanelli, A. Montagu et al., Synergistic interactions between doxycycline and terpenic components of essential oils encapsulated within lipid nanocapsules against gram negative bacteria, Int. J. Pharm, vol.498, pp.23-31, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01388818

A. Umerska, V. Cassisa, G. Bastiat, N. Matougui, F. Manero et al., Synergistic interactions between antimicrobial peptides derived from plectasin and lipid nanocapsules containing monolaurin as a cosurfactant against Staphylococcus aureus, Int. J. Nanomedicine, vol.12, pp.5687-5699, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01814912

P. M. Schlievert and M. L. Peterson, Glycerol monolaurate antibacterial activity in broth and biofilm cultures, PLoS One, vol.7, 2012.

P. G. Bowler, B. I. Duerden, and D. G. Armstrong, Wound microbiology and associated approaches to wound management wound microbiology and associated approaches to wound management, Clin. Microbiol. Rev, vol.14, pp.244-269, 2001.

L. J. Bessa, P. Fazii, M. D. Giulio, and L. Cellini, Bacterial isolates from infected wounds and their antibiotic susceptibility pattern: some remarks about wound infection, Int. Wound J, vol.12, pp.47-52, 2015.

S. L. Percival, K. E. Hill, D. W. Williams, S. J. Hooper, D. W. Thomas et al., A review of the scientific evidence for biofilms in wounds, Wound Repair Regen, vol.20, pp.647-657, 2012.

K. Rahim, S. Saleha, X. Zhu, L. Huo, A. Basit et al., Bacterial contribution in chronicity of wounds, Microb. Ecol, vol.73, pp.710-721, 2016.

N. T. Huynh, C. Passirani, P. Saulnier, and J. P. Benoit, Lipid nanocapsules: a new platform for nanomedicine, Int. J. Pharm, vol.379, pp.201-209, 2009.

A. Umerska, N. Matougui, A. C. Groo, and P. Saulnier, Understanding the adsorption of salmon calcitonin, antimicrobial peptide AP114 and polymyxin B onto lipid nanocapsules, Int. J. Pharm, vol.506, pp.191-200, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01392465

T. Kaufman, S. N. Lusthaus, U. Sagher, and M. R. Wexler, Deep partial skin thickness burns: a reproducible animal model to study burn wound healing, Burns, vol.16, pp.90199-90206, 1990.

Y. Liu, H. J. Busscher, B. Zhao, Y. Li, Z. Zhang et al., Surface-adaptive, antimicrobially loaded, micellar nanocarriers with enhanced penetration and killing efficiency in staphylococcal biofilms, ACS Nano, vol.10, pp.4779-4789, 2016.

Y. Liu, H. C. Van-der-mei, B. Zhao, Y. Zhai, T. Cheng et al., Eradication of multidrug-resistant staphylococcal infections by lightactivatable micellar nanocarriers in a murine model, Adv. Funct. Mater, vol.27, pp.1-11, 2017.

M. Mahlapuu, J. Håkansson, L. Ringstad, and C. Björn, Antimicrobial peptides: an emerging category of therapeutic agents, Front. Cell. Infect. Microbiol, vol.6, 2016.

S. J. Projan, S. Brown-skrobot, P. M. Schlievert, F. Vandenesch, and R. P. Novick, Glycerol monolaurate inhibits the production of B-lactamase, toxic shock syndrome toxin-1, and other staphylococcal exoproteins by interfering with signal transduction, J. Bacteriol, vol.176, pp.4204-4209, 1994.

G. Wu, J. Ding, H. Li, L. Li, R. Zhao et al., Effects of cations and pH on antimicrobial activity of thanatin and s-thanatin against Escherichia coli ATCC 25922 and B. subtilis ATCC 21332, Curr. Microbiol, vol.57, pp.552-557, 2008.

F. Morgera, L. Vaccari, N. Antcheva, D. Scaini, S. Pacor et al., Primate cathelicidin orthologues display different structures and membrane interactions, Biochem. J, vol.417, pp.727-735, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00479089

I. Wiegand, K. Hilpert, and R. E. Hancock, Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances, Nat. Protoc, vol.3, pp.163-175, 2008.

L. Boge, H. Bysell, L. Ringstad, D. Wennman, A. Umerska et al., Lipid-based liquid crystals as carriers for antimicrobial peptides: phase behavior and antimicrobial effect, Langmuir, vol.32, pp.4217-4228, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01392483

L. Boge, A. Umerska, N. Matougui, H. Bysell, L. Ringstad et al., Cubosomes post-loaded with antimicrobial peptides: characterization, bactericidal effect and proteolytic stability, Int. J. Pharm, vol.526, pp.400-412, 2017.

E. M. Haisma, A. De-breij, H. Chan, J. T. Van-dissel, J. W. Drijfhout et al., LL-37-derived peptides eradicate multidrug-resistant Staphylococcus aureus from thermally wounded human skin equivalents, Antimicrob. Agents Chemother, vol.58, pp.4411-4419, 2014.

J. Noore, A. Noore, and B. Li, Cationic antimicrobial peptide LL-37 is effective against both extra-and intracellular Staphylococcus aureus, Antimicrob. Agents Chemother, vol.57, pp.1283-1290, 2013.

S. N. Dean, B. M. Bishop, and M. L. Van-hoek, Natural and synthetic cathelicidin peptides with anti-microbial and anti-biofilm activity against Staphylococcus aureus, BMC Microbiol, vol.11, 2011.

K. Ouhara, H. Komatsuzawa, T. Kawai, H. Nishi, T. Fujiwara et al., Increased resistance to cationic antimicrobial peptide LL-37 in methicillin-resistant strains of Staphylococcus aureus, J. Antimicrob. Chemother, vol.61, pp.1266-1269, 2008.

T. Dai, G. B. Kharkwal, M. Tanaka, Y. Y. Huang, V. J. Bil-de-arce et al., Animal models of external traumatic wound infections, Virulence, vol.2, 2011.

T. Rozenbaum, Journal of Controlled Release, vol.293, pp.73-83, 2019.

, , pp.296-315

T. Dai, G. P. Tegos, T. Zhiyentayev, E. Mylonakis, and M. R. Hamblin, Photodynamic therapy for methicillin-resistant Staphylococcus aureus infection in a mouse skin abrasion model, Lasers Surg. Med, vol.42, pp.38-44, 2010.

H. K. Kim, D. Missiakas, and O. Schneewind, Mouse models for infectious diseases caused by Staphylococcus aureus, J. Immunol. Methods, vol.410, pp.88-99, 2014.

T. D. Heunis, C. Smith, and L. M. Dicks, Evaluation of a nisin-eluting nanofiber scaffold to treat Staphylococcus aureus-induced skin infections in mice, Antimicrob. Agents Chemother, vol.57, pp.622-635, 2013.

Y. Guo, R. I. Ramos, J. S. Cho, N. P. Donegan, A. L. Cheung et al., In vivo bioluminescence imaging to evaluate systemic and topical antibiotics against community-acquired methicillin-resistant Staphylococcus aureus-infected skin wounds in mice, Antimicrob. Agents Chemother, vol.57, pp.1003-1015, 2013.

Y. Hu, V. Hegde, D. Johansen, A. H. Loftin, E. Dworsky et al., Combinatory antibiotic therapy increases rate of bacterial kill but not final outcome in a novel mouse model of Staphylococcus aureus spinal implant infection, PLoS One, vol.12, pp.1-11, 2017.

A. G. Ashbaugh, X. Jiang, J. Zheng, A. S. Tsai, W. Kim et al., Polymeric nanofiber coating with tunable combinatorial antibiotic delivery prevents biofilm-associated infection in vivo, Proc. Natl. Acad. Sci, vol.113, pp.6919-6928, 2016.

H. G. Preuss, B. Echard, A. Dadgar, N. Talpur, V. Manohar et al., Effects of essential oils and monolaurin on Staphylococcus aureus: in vitro and in vivo studies, Toxicol. Mech. Methods, vol.15, pp.279-285, 2005.

V. Manohar, B. Echard, N. Perricone, C. Ingram, M. Enig et al., In vitro and in vivo effects of two coconut oils in comparison to monolaurin on Staphylococcus aureus: rodent studies, J. Med. Food, vol.16, pp.499-503, 2013.

Y. C. Lin, P. M. Schlievert, M. J. Anderson, C. L. Fair, M. M. Schaefers et al., Glycerol monolaurate and dodecylglycerol effects on Staphylococcus aureus and toxic shock syndrome toxin-1 in vitro and in vivo, PLoS One, vol.4, pp.2-11, 2009.

R. A. Dorschner, V. K. Pestonjamasp, S. Tamakuwala, T. Ohtake, J. Rudisill et al., Cutaneous injury induces the release of cathelicidin anti-microbial peptides active against group A streptococcus, J. Invest. Dermatol, vol.117, pp.91-97, 2001.

T. Rozenbaum, Journal of Controlled Release, vol.293, pp.73-83, 2019.