L. Lodélod´lodé, M. Eveillard, and V. Trichet, Mutations in TP53 are exclusively associated with del(17p) in multiple myeloma, Haematologica, vol.95, issue.11, pp.1973-1976, 2010.

B. Tessoulin, M. Eveillard, and A. Lok, p53 dysregulation in B-cell malignancies: More than a single gene in the pathway to hell, Blood Rev, vol.31, issue.4, pp.251-259, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01493742

A. Palumbo, H. Avet-loiseau, and S. Oliva, Revised International Staging System for Multiple Myeloma: a report from International Myeloma Working Group, J Clin Oncol, vol.33, issue.26, pp.2863-2869, 2015.

N. Weinhold, C. Ashby, and L. Rasche, Clonal selection and double-hit events involving tumor suppressor genes underlie relapse in myeloma, Blood, vol.128, issue.13, pp.1735-1744, 2016.

A. Janic, L. J. Valente, and M. J. Wakefield, DNA repair processes are critical mediators of p53-dependent tumor suppression, Nat Med, vol.24, issue.7, pp.947-953, 2018.

S. Surget, E. Lemieux-blanchard, and S. Ma¨?gama¨?ga, Bendamustine and melphalan kill myeloma cells similarly through reactive oxygen species production and activation of the p53 pathway and do not overcome resistance to each other, Leuk Lymphoma, vol.55, issue.9, pp.2165-2173, 2014.

C. Munoz-fontela, M. A. Garcia, and I. Garcia-cao, Resistance to viral infection of super p53 mice, Oncogene, vol.24, issue.18, pp.3059-3062, 2005.

K. H. Lim, J. J. Park, B. H. Gu, J. O. Kim, S. G. Park et al., HAUSP-nucleolin interaction is regulated by p53-Mdm2 complex in response to DNA damage response, Sci Rep, vol.5, issue.1, p.12793, 2015.

D. Martinez-zapien, F. X. Ruiz, and J. Poirson, Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53, Nature, vol.529, issue.7587, pp.541-545, 2016.

A. Z. Bluming and J. L. Ziegler, Regression of Burkitt's lymphoma in association with measles infection, Lancet, vol.2, issue.7715, pp.105-106, 1971.

E. Galanis, Therapeutic potential of oncolytic measles virus: promises and challenges, Clin Pharmacol Ther, vol.88, issue.5, pp.620-625, 2010.

H. D. Hummel, G. Kuntz, and S. J. Russell, Genetically engineered attenuated measles virus specifically infects and kills primary multiple myeloma cells, J Gen Virol, vol.90, pp.693-701, 2009.

S. J. Russell, M. J. Federspiel, and K. W. Peng, Remission of disseminated cancer after systemic oncolytic virotherapy, Mayo Clin Proc, vol.89, issue.7, pp.926-933, 2014.

S. J. Russell and K. W. Peng, Measles virus for cancer therapy, Curr Top Microbiol Immunol, vol.330, pp.213-241, 2009.

S. J. Russell, K. W. Peng, and J. C. Bell, Oncolytic virotherapy, Nat Biotechnol, vol.30, issue.7, pp.658-670, 2012.

M. K. Chelbi-alix and J. Wietzerbin, Interferon, a growing cytokine family: 50 years of interferon research, Biochimie, vol.89, issue.6-7, pp.713-718, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00170725

A. Takaoka, S. Hayakawa, and H. Yanai, Integration of interferon-alpha/beta signalling to p53 responses in tumour suppression and antiviral defence, Nature, vol.424, issue.6948, pp.516-523, 2003.

K. I. Leonova, L. Brodsky, and B. Lipchick, p53 cooperates with DNA methylation and a suicidal interferon response to maintain epigenetic silencing of repeats and noncoding RNAs, Proc Natl Acad Sci USA, vol.110, issue.1, pp.89-98, 2013.

D. Gancz and Z. Fishelson, Cancer resistance to complement-dependent cytotoxicity (CDC): Problem-oriented research and development, Mol Immunol, vol.46, issue.14, pp.2794-2800, 2009.
DOI : 10.1016/j.molimm.2009.05.009

H. T. Ong, M. M. Timm, and P. R. Greipp, Oncolytic measles virus targets high CD46 expression on multiple myeloma cells, Exp Hematol, vol.34, issue.6, pp.713-720, 2006.
DOI : 10.1016/j.exphem.2006.03.002

C. Combredet, V. Labrousse, and L. Mollet, A molecularly cloned Schwarz strain of measles virus vaccine induces strong immune responses in macaques and transgenic mice, J Virol, vol.77, issue.21, pp.11546-11554, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02129918

R. Buettner, M. Huang, and T. Gritsko, Activated signal transducers and activators of transcription 3 signaling induces CD46 expression and protects human cancer cells from complement-dependent cytotoxicity, Mol Cancer Res, vol.5, issue.8, pp.823-832, 2007.

W. Cui, Y. Zhao, and C. Shan, HBXIP upregulates CD46, CD55 and CD59 through ERK1/2/NF-kB signaling to protect breast cancer cells from complement attack, FEBS Lett, vol.586, issue.6, pp.766-771, 2012.
DOI : 10.1016/j.febslet.2012.01.039

URL : https://febs.onlinelibrary.wiley.com/doi/pdf/10.1016/j.febslet.2012.01.039

R. Kesselring, A. Thiel, and R. Pries, The complement receptors CD46, CD55 and CD59 are regulated by the tumour microenvironment of head and neck cancer to facilitate escape of complement attack, Eur J Cancer, vol.50, issue.12, pp.2152-2161, 2014.

D. W. Sherbenou, B. T. Aftab, and Y. Su, Antibody-drug conjugate targeting CD46 eliminates multiple myeloma cells, J Clin Invest, vol.126, issue.12, pp.4640-4653, 2016.
DOI : 10.1172/jci85856

URL : http://www.jci.org/articles/view/85856/files/pdf

A. Dispenzieri, C. Tong, and B. Laplant, Phase I trial of systemic administration of Edmonston strain of measles virus genetically engineered to express the sodium iodide symporter in patients with recurrent or refractory multiple myeloma, Leukemia, vol.31, issue.12, pp.2791-2798, 2017.

D. Chiron, S. Surget, and S. Ma¨?gama¨?ga, The peripheral CD1381 population but not the CD138-population contains myeloma clonogenic cells in plasma cell leukaemia patients, Br J Haematol, vol.156, issue.5, pp.679-683, 2012.

S. Ma¨?gama¨?ga, C. Brosseau, and G. Descamps, A simple flow cytometry-based barcode for routine authentication of multiple myeloma and mantle cell lymphoma cell lines, Cytometry A, vol.87, issue.4, pp.285-288, 2015.

J. Moreaux, B. Klein, and R. Bataille, A high-risk signature for patients with multiple myeloma established from the molecular classification of human myeloma cell lines, Haematologica, vol.96, issue.4, pp.574-582, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00550232

S. Surget, D. Chiron, and P. Gomez-bougie, Cell death via DR5, but not DR4, is regulated by p53 in myeloma cells, Cancer Res, vol.72, issue.17, pp.4562-4573, 2012.

B. Tessoulin, G. Descamps, and P. Moreau, PRIMA-1Met induces myeloma cell death independent of p53 by impairing the GSH/ROS balance, Blood, vol.124, issue.10, pp.1626-1636, 2014.

B. Tessoulin, A. Moreau-aubry, and G. Descamps, Whole exon sequencing of human myeloma cell lines shows mutations related to myeloma patients at relapse with major hits in the DNA regulation and repair pathways, J Hematol Oncol
URL : https://hal.archives-ouvertes.fr/inserm-01958772

S. Surget, G. Descamps, and C. Brosseau, RITA (reactivating p53 and inducing tumor apoptosis) is efficient against TP53abnormal myeloma cells independently of the p53 pathway, BMC Cancer, vol.14, issue.1, p.437, 2014.

Y. Michel, K. Saloum, and C. Tournier, Rapid molecular diagnosis of measles virus infection in an epidemic setting, J Med Virol, vol.85, issue.4, pp.723-730, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00784224

Z. Andrysik, M. D. Galbraith, and A. L. Guarnieri, Identification of a core TP53 transcriptional program with highly distributed tumor suppressive activity, Genome Res, vol.27, issue.10, pp.1645-1657, 2017.

B. K. Singh, A. L. Hornick, and S. Krishnamurthy, The nectin-4/afadin protein complex and intercellular membrane pores contribute to rapid spread of measles virus in primary human airway epithelia, J Virol, vol.90, issue.6, p.3278, 2016.

, J Virol, vol.89, issue.14, pp.7089-7096, 2015.

H. Geekiyanage and E. Galanis, MiR-31 and miR-128 regulates poliovirus receptor-related 4 mediated measles virus infectivity in tumors, Mol Oncol, vol.10, issue.9, pp.1387-1403, 2016.
DOI : 10.1016/j.molonc.2016.07.007

URL : https://febs.onlinelibrary.wiley.com/doi/pdf/10.1016/j.molonc.2016.07.007

H. Hermeking, MicroRNAs in the p53 network: micromanagement of tumour suppression, Nat Rev Cancer, vol.12, issue.9, pp.613-626, 2012.

A. V. Kofman, C. Letson, and E. Dupart, The p53-microRNA-34a axis regulates cellular entry receptors for tumor-associated human herpes viruses, Med Hypotheses, vol.81, issue.1, pp.62-67, 2013.

C. Achard, N. Boisgerault, and T. Delaunay, Sensitivity of human pleural mesothelioma to oncolytic measles virus depends on defects of the type I interferon response, Oncotarget, vol.6, issue.42, pp.44892-44904, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01285131

D. S. Liu, C. P. Duong, and S. Haupt, Inhibiting the system x C-/glutathione axis selectively targets cancers with mutant-p53 accumulation, Nat Commun, vol.8, p.14844, 2017.

M. Wanzel, J. B. Vischedyk, and M. P. Gittler, CRISPR-Cas9-based target validation for p53-reactivating model compounds, Nat Chem Biol, vol.12, issue.1, pp.22-28, 2016.

E. C. Hsu, C. Iorio, F. Sarangi, A. A. Khine, and C. D. Richardson, CDw150(SLAM) is a receptor for a lymphotropic strain of measles virus and may account for the immunosuppressive properties of this virus, Virology, vol.279, issue.1, pp.9-21, 2001.

D. R. Carrasco, G. Tonon, and Y. Huang, High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients, Cancer Cell, vol.9, issue.4, pp.313-325, 2006.

R. Pan, V. Ruvolo, and H. Mu, Synthetic lethality of combined Bcl-2 inhibition and p53 activation in AML: mechanisms and superior antileukemic efficacy, Cancer Cell, vol.32, issue.6, pp.748-760, 2017.

B. D. Anderson, T. Nakamura, S. J. Russell, and K. W. Peng, High CD46 receptor density determines preferential killing of tumor cells by oncolytic measles virus, Cancer Res, vol.64, issue.14, pp.4919-4926, 2004.

C. Dousset, S. Maiga, and P. Gomez-bougie, BH3 profiling as a tool to identify acquired resistance to venetoclax in multiple myeloma, Br J Haematol, vol.179, issue.4, pp.684-688, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01353369

M. S. Roberts, R. M. Lorence, W. S. Groene, and M. K. Bamat, Naturally oncolytic viruses, Curr Opin Mol Ther, vol.8, issue.4, pp.314-321, 2006.