A. Marusyk, V. Almendro, and K. Polyak, Intra-tumour heterogeneity: a looking glass for cancer?, Nat. Rev. Cancer, vol.12, pp.323-357, 2012.
DOI : 10.1038/nrc3261

M. J. Pienta, N. Mcgregor, R. Axelrod, and D. E. Axelrod, Ecological therapy for cancer: defining tumors using an ecosystem paradigm suggests new opportunities for novel cancer treatments, Transl. Oncol, vol.1, pp.158-64, 2008.
DOI : 10.1593/tlo.08178

URL : https://doi.org/10.1593/tlo.08178

L. J. Barber, M. N. Davies, and M. Gerlinger, Dissecting cancer evolution at the macroheterogeneity and micro-heterogeneity scale, Curr. Opin. Genet. Dev, vol.30, pp.1-6, 2015.
DOI : 10.1016/j.gde.2014.12.001

URL : https://doi.org/10.1016/j.gde.2014.12.001

L. M. Merlo, J. W. Pepper, B. J. Reid, and C. C. Maley, Cancer as an evolutionary and ecological process, Nat. Rev. Cancer, vol.6, pp.924-959, 2006.
DOI : 10.1038/nrc2013

P. D. Vertii, H. Kaufman, S. Hehnly, and . Doxsey, New dimensions of asymmetric division in vertebrates, Cytoskeleton, vol.75, pp.87-102, 2018.

A. Santoro, T. Vlachou, M. Carminati, P. G. Pelicci, and M. Mapelli, Molecular mechanisms of asymmetric divisions in mammary stem cells, EMBO Rep, vol.17, pp.1700-1720, 2016.

T. G. Karrison, D. J. Ferguson, and P. Meier, Dormancy of mammary carcinoma after mastectomy, J. Natl. Cancer Inst, vol.91, pp.80-85, 1999.
DOI : 10.1093/jnci/91.1.80

URL : https://academic.oup.com/jnci/article-pdf/91/1/80/7794888/80.pdf

M. Osisami and E. T. Keller, Mechanisms of metastatic tumor dormancy, J. Clin. Med, vol.2, pp.136-150, 2013.
DOI : 10.3390/jcm2030136

URL : http://www.mdpi.com/2077-0383/2/3/136/pdf

M. J. Arlt, I. J. Banke, J. Bertz, R. M. Kumar, R. Muff et al., Reduced Latency in the metastatic niche contributes to the more aggressive phenotype of LM8 compared to Dunn osteosarcoma cells, Sarcoma, vol.2013, p.404962, 2013.

S. Braun, C. Schindlbeck, F. Hepp, W. Janni, C. Kentenich et al., Occult tumor cells in bone marrow of patients with locoregionally restricted ovarian cancer predict early distant metastatic relapse, J. Clin. Oncol, vol.19, pp.368-75, 2001.

E. Racila, D. Euhus, A. J. Weiss, C. Rao, J. Mcconnell et al., Detection and characterization of carcinoma cells in the blood, Proc. Natl. Acad. Sci. U.S.A, vol.95, pp.4589-4594, 1998.

S. Braun and N. Harbeck, Recent advances in technologies for the detection of occult metastatic cells in bone marrow of breast cancer patients, Breast Cancer Res, vol.3, pp.285-288, 2001.

G. Riethmüller and C. A. Klein, Early cancer cell dissemination and late metastatic relapse: clinical reflections and biological approaches to the dormancy problem in patients, Semin. Cancer Biol, vol.11, pp.307-311, 2001.

S. Meng, D. Tripathy, E. P. Frenkel, S. Shete, E. Z. Naftalis et al., Circulating tumor cells in patients with breast cancer dormancy, Clin. Cancer Res, vol.10, pp.8152-8162, 2004.

M. Vishnoi, S. Peddibhotla, W. Yin, A. Scamardo, G. C. George et al., The isolation and characterization of CTC subsets related to breast cancer dormancy, Sci. Rep, vol.5, p.17533, 2015.

S. L. Stott, R. J. Lee, S. Nagrath, M. Yu, D. T. Miyamoto et al., Isolation and characterization of circulating tumor cells from patients with localized and metastatic prostate cancer, Sci. Transl. Med, vol.2, pp.25-48, 2010.

S. Avnet, G. Di-pompo, T. Chano, C. Errani, A. Ibrahim-hashim et al., Cancer-associated mesenchymal stroma fosters the stemness of osteosarcoma cells in response to intratumoral acidosis via NF-?B activation, Int. J. Cancer, vol.140, pp.1331-1345, 2017.

N. Linde, G. Fluegen, and J. A. Aguirre-ghiso, The relationship between dormant cancer cells and their microenvironment, Adv. Cancer Res, vol.132, pp.45-71, 2016.
DOI : 10.1016/bs.acr.2016.07.002

URL : http://europepmc.org/articles/pmc5342905?pdf=render

J. E. Visvader, Cells of origin in cancer, Nature, vol.469, pp.314-322, 2011.

E. N. Wainwright and P. Scaffidi, Epigenetics and cancer stem cells: unleashing, hijacking, and restricting cellular plasticity, Trends Cancer, vol.3, pp.372-386, 2017.
DOI : 10.1016/j.trecan.2017.04.004

URL : https://doi.org/10.1016/j.trecan.2017.04.004

P. M. Glumac and A. M. Lebeau, The role of CD133 in cancer: a concise review, Clin. Transl. Med, vol.7, p.18, 2018.

D. Zhang, D. G. Tang, and K. Rycaj, Cancer stem cells: Regulation programs, immunological properties and immunotherapy, Semin. Cancer Biol. In press

G. Kaur, P. Sharma, N. Dogra, and S. Singh, Eradicating cancer stem cells: concepts, issues, and challenges, Curr. Treat. Options Oncol, vol.19, p.20, 2018.

H. K. Brown, M. Tellez-gabriel, and D. Heymann, Cancer stem cells in osteosarcoma, Cancer Lett, vol.386, pp.189-195, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01466078

A. P. Kusumbe and S. A. Bapat, Cancer stem cells and aneuploid populations within developing tumors are the major determinants of tumor dormancy, Cancer Res, vol.69, pp.9245-9253, 2009.

V. Adamski, A. Hempelmann, C. Flüh, R. Lucius, M. Synowitz et al., Dormant glioblastoma cells acquire stem cell characteristics and are differentially affected by Temozolomide and AT101 treatment, Oncotarget, vol.8, pp.108064-108078, 2017.

F. Alowaidi, S. M. Hashimi, N. Alqurashi, R. Alhulais, S. Ivanovski et al., Assessing stemness and proliferation properties of the newly established colon cancer 'stem' cell line, CSC480 and novel approaches to identify dormant cancer cells, Oncol. Rep. in press

X. Bai, J. Ni, J. Beretov, P. Graham, and Y. Li, Cancer stem cell in breast cancer therapeutic resistance, Cancer Treat. Rev, vol.69, pp.152-163, 2018.

A. Carcereri-de-prati, E. Butturini, A. Rigo, E. Oppici, M. Rossin et al., Metastatic breast cancer cells enter into dormant state and express cancer stem cells phenotype under chronic hypoxia, J. Cell Biochem, vol.118, pp.3237-3248, 2017.

S. Skvortsov, D. G. Skvortsova, A. Tang, and . Dubrovska, Prostate cancer stem cells: current understanding, Stem Cells in press

D. Prabavathy, Y. Swarnalatha, and N. Ramadoss, Lung cancer stem cells-origin2 characteristics and therapy, Stem Cell Investig, vol.5, p.6, 2018.

I. Kobayashi, F. Takahashi, F. Nurwidya, T. Nara, M. Hashimoto et al., Oct4 plays a crucial role in the maintenance of gefitinib-resistant lung cancer stem cells, Biochem. Biophys. Res. Commun, vol.473, pp.125-132, 2016.

N. Zhou, X. Wu, B. Yang, X. Yang, D. Zhang et al., Stem cell characteristics of dormant cells and cisplatin-induced effects on the stemness of epithelial ovarian cancer cells, Mol. Med. Rep, vol.10, pp.2495-504, 2014.

M. Drug, S. Rajaram, R. J. Steininger, D. Osipchuk, M. A. Roth et al.,

S. J. Wu and . Altschuler, Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells, Nat. Commun, vol.7, p.10690, 2016.

Y. Touil, W. Igoudjil, M. Corvaisier, A. F. Dessein, J. Vandomme et al., Colon cancer cells escape 5FU chemotherapy-induced cell death by entering stemness and quiescence associated with the c-Yes/YAP axis, Clin Cancer Res, vol.20, pp.837-883, 2014.

C. Maccalli, K. I. Rasul, M. Elawad, and S. Ferrone, The role of cancer stem cells in the modulation of anti-tumor immune responses, Semin. Cancer Biol. in press

D. Zhang, D. G. Tang, and K. Rycaj, Cancer stem cells: Regulation programs, immunological properties and immunotherapy, Semin. Cancer Biol. in press

K. P. Wilkie and P. Hahnfeldt, Mathematical models of immune-induced cancer dormancy and the emergence of immune evasion, Interface Focus, vol.3, p.20130010, 2013.

C. Maccalli, G. Parmiani, and S. Ferrone, Immunomodulating and immunoresistance properties of cancer-initiating cells: Implications for the Clinical Success of Immunotherapy, Immunol. Invest, vol.46, pp.221-238, 2017.

T. Di-tomaso, S. Mazzoleni, E. Wang, G. Sovena, D. Clavenna et al., Immunobiological characterization of cancer stem cells isolated from glioblastoma patients, Clin. Cancer Res, vol.16, pp.800-813, 2010.

C. Maccalli, A. Volontè, C. Cimminiello, and G. Parmiani, Immunology of cancer stem cells in solid tumours. A review, Eur. J. Cancer, vol.50, pp.649-55, 2014.

J. Poleszczuk, P. Hahnfeldt, and H. Enderling, Evolution and phenotypic selection of cancer stem cells, PLoS Comput. Biol, vol.11, p.1004025, 2015.

S. Paget, The distribution of secondary growths in cancer of the breast, Cancer Metastasis Rev, vol.1889, pp.98-101, 1989.

X. Cahu, J. Calvo, S. Poglio, N. Prade, B. Colsch et al., Bone marrow sites differently imprint dormancy and chemoresistance to T-cell acute lymphoblastic leukemia, Blood Adv, vol.1, pp.1760-1772, 2017.

S. J. Morriso and D. T. Scadden, The bone marrow niche for haematopoietic stem cells, Nature, vol.505, pp.327-361, 2014.

G. Ren, M. Esposito, and Y. Kang, Bone metastasis and the metastatic niche, J. Mol. Med. (Berl), pp.1203-1215, 2015.

S. Y. Jeong, J. A. Kim, and I. H. Oh, The adaptive remodeling of stem cell niche in stimulated bone marrow counteracts the leukemic niche, Stem Cells in press

T. Celià-terrassa and Y. Kang, Metastatic niche functions and therapeutic opportunities, Nat. Cell Biol, vol.20, pp.868-877, 2018.

Y. Shiozawa, J. E. Berry, M. R. Eber, Y. Jung, K. Yumoto et al., The marrow niche controls the cancer stem cell phenotype of disseminated prostate cancer, Oncotarget, vol.7, pp.41217-41232, 2016.

L. Y. Yu-lee, G. Yu, Y. C. Lee, S. C. Lin, J. Pan et al., Osteoblast-secreted factors mediate dormancy of metastatic prostate cancer in the bone via activation of the TGF?RIII-p38MAPK-pS249/T252RB pathway, Cancer Res. In press

D. Heymann and A. V. Rousselle, gp130 Cytokine family and bone cells, vol.12, pp.1455-68, 2000.

R. W. Johnson, E. C. Finger, M. M. Olcina, M. Vilalta, T. Aguilera et al., Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow, Nat. Cell Biol, vol.18, pp.1078-1089, 2016.

S. Sharma, F. Xing, Y. Liu, K. Wu, N. Said et al., Secreted protein acidic and rich in cysteine (SPARC) mediates metastatic dormancy of prostate cancer in bone, J. Biol. Chem, vol.291, pp.19351-19363, 2016.

H. Zheng, Y. Bae, S. Kasimir-bauer, R. Tang, J. Chen et al., Therapeutic antibody targeting tumor-and osteoblastic niche-derived jagged1 sensitizes bone metastasis to chemotherapy, Cancer Cell, vol.32, pp.731-747, 2017.

L. Lenk, M. Pein, O. Will, B. Gomez, F. Viol et al., The hepatic microenvironment essentially determines tumor cell dormancy and metastatic outgrowth of pancreatic ductal adenocarcinoma, Oncoimmunol, vol.7, p.1368603, 2017.

C. M. Ghajar, H. Peinado, H. Mori, I. R. Matei, K. J. Evason et al., The perivascular niche regulates breast tumor dormancy, Nat. Cell Biol, vol.15, pp.807-817, 2013.

I. Amelio and G. Melino, The p53 family and the hypoxia-inducible factors (HIFs): determinants of cancer progression, Trends Biochem. Sci, vol.40, pp.425-459, 2015.

S. Peppicelli, E. Andreucci, J. Ruzzolini, A. Laurenzana, F. Margheri et al., The acidic microenvironment as a possible niche of dormant tumor cells, Cell. Mol. Life Sci, vol.74, pp.2761-2771, 2017.

J. T. Erler, K. L. Bennewithl, M. Nicolau, N. Dornhöfer, C. Kong et al., Lysyl oxidase is essential for hypoxia-induced metastasis, Nature, vol.440, pp.1222-1226, 2006.

K. Hoppe-seyler, F. Bossler, C. Lohrey, J. Bulkescher, F. Rösl et al., Hoppe-Seyler F, Induction of dormancy in hypoxic human papillomavirus-positive cancer cells, Proc. Natl. Acad. Sci. U.S.A, vol.114, 2017.

K. Weidenfeld, S. Schif-zuck, H. Abu-tayeh, K. Kang, O. Kessler et al., Dormant tumor cells expressing LOXL2 acquire a stem-like phenotype mediating their transition to proliferative growth, Oncotarget, vol.7, pp.71362-71377, 2016.

G. Pascual, A. Avgustinova, S. Mejetta, M. Martín, A. Castellanos et al., Targeting metastasis-initiating cells through the fatty acid receptor CD36, Nature, vol.541, pp.41-45, 2017.

S. Keeratichamroen, K. Lirdprapamongkol, and J. Svasti, Mechanism of ECM-induced dormancy and chemoresistance in A549 human lung carcinoma cells, Oncol. Rep, vol.39, pp.1765-1774, 2018.

E. V. Koonin, K. S. Makarova, and Y. I. Wolf, Evolutionary Genomics of Defense Systems in Archaea and Bacteria, Annu. Rev. Microbiol, vol.71, pp.233-261, 2017.

R. A. Fisher, B. Gollan, and S. Helaine, Persistent bacterial infections and persister cells, Nat. Rev. Microbiol, vol.15, pp.453-464, 2017.

T. K. Wood, S. J. Knabel, and B. W. Kwan, Bacterial persister cell formation and dormancy, Appl. Environ. Microbiol, vol.79, pp.7116-7121, 2013.

M. Fauvart, V. N. De-groote, and J. Michiels, Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies, J. Med. Microbiol, vol.60, pp.699-709, 2011.

S. V. Sharma, D. Y. Lee, B. Li, M. P. Quinlan, F. Takahashi et al., A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations, Cell, pp.69-80, 2010.

A. Roesch, M. Fukunaga-kalabis, E. C. Schmidt, S. E. Zabierowski, P. A. Brafford et al., A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth, Cell, vol.141, pp.583-94, 2010.

H. Van-acker, P. Van-dijck, and T. Coenye, Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms, Trends Microbiol, vol.22, pp.326-359, 2014.

N. Wu, L. He, P. Cui, W. Wang, Y. Yuan et al., Ranking of persister genes in the same Escherichia coli genetic background demonstrates varying importance of individual persister genes in tolerance to different antibiotics, Front. Microbiol, vol.6, p.1003, 2015.

H. P. Gideon and J. L. Flynn, Latent tuberculosis: what the host "sees"?, Immunol. Res, vol.50, pp.202-214, 2011.

J. M. Cliff, S. H. Kaufmann, H. Mcshane, P. Van-helden, and A. O'garra, The human immune response to tuberculosis and its treatment: a view from the blood, Immunol. Rev, vol.264, pp.88-102, 2015.

C. J. Cambier, K. K. Takaki, R. P. Larson, R. E. Hernandez, D. M. Tobin et al., Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids, Nature, vol.505, pp.218-240, 2014.

M. E. Remoli, E. Giacomini, E. Petruccioli, V. Gafa, M. Severa et al., Bystander inhibition of dendritic cell differentiation by Mycobacterium tubercolisi-induced IL10, Immunol. Cell. Biol, vol.89, pp.437-446, 2011.

S. Sharma, M. Sharma, and M. Bose, Mycobacterium tuberculosis infection of human monocyte-derived macrophages leads to apoptosis of T cells, Immunol. Cell. Biol, vol.87, pp.226-234, 2009.

L. Kucerova, L. Feketeova, M. Matuskova, Z. Kozovska, P. Janega et al., Local bystander effect induces dormancy in human medullary thyroid carcinoma model in vivo, Cancer Lett, vol.335, pp.299-305, 2013.

Y. Liu, A. Kobayashi, Q. Fu, G. Yang, T. Konishi et al., Rescue of targeted nonstem-Like cells from bystander Stem-Like cells in human fibrosarcoma HT1080, Radiat. Res, vol.184, pp.334-340, 2015.

M. Adam, B. Murali, N. O. Glenn, and S. S. Potter, Epigenetic inheritance based evolution of antibiotic resistance in bacteria, BMC Evol. Biol, vol.8, p.52, 2008.

B. Knoechel, J. E. Roderick, K. E. Williamson, J. Zhu, J. G. Lohr et al., An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia, Nat. Genet, vol.46, pp.364-370, 2014.

G. D. Guler, C. A. Tindell, R. Pitti, C. Wilson, K. Nichols et al., Repression of stress-induced LINE-1 expression protects cancer cell subpopulations from lethal drug exposure, Cancer Cell, vol.32, pp.221-237, 2017.

F. Crea, N. R. Saidy, C. C. Collins, and Y. Wang, The epigenetic/noncoding origin of tumor dormancy, Trends Mol. Med, vol.21, pp.206-211, 2015.

H. Van-acker, P. Van-dijck, and T. Coenye, Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms, Trends Microbiol, vol.22, pp.326-359, 2014.

R. A. Fisher, B. Gollan, and S. Helaine, Persistent bacterial infections and persister cells, Nat. Rev. Microbiol, vol.15, pp.453-464, 2017.

C. Holohan, S. Van-schaeybroeck, D. B. Longley, and P. G. Johnston, Cancer drug resistance: an evolving paradigm, Nat. Rev. Cancer, vol.13, pp.714-726, 2013.

M. H. Manjili, Tumor dormancy and relapse : from a natural bioproduct of evolution to a disease state, Cancer Res, vol.77, pp.2564-2569, 2017.

A. C. Ranganathan, S. Ojha, A. Kourtidis, D. S. Conklin, and J. A. Aguirre-ghiso, Dual function of pancreatic endoplasmic reticulum kinase in tumor cell growth arrest and survival, Cancer Res, vol.68, pp.3260-3268, 2008.

L. Vera-ramirez, S. K. Vodnala, R. Nini, K. W. Hunter, and J. E. Green, Autophagy promotes the survival of dormant breast cancer cells and metastatic tumour recurrence, Nat Commun, vol.9, p.1944, 2018.

H. Terai, S. Kitajima, D. S. Potter, Y. Matsui, L. G. Quiceno et al., ER stress signaling promotes the survival of cancer "persister cells" tolerant to EGFR tyrosine kinase inhibitors, Cancer Res, vol.78, pp.1044-1057, 2018.

A. Al-emran, D. M. Marzese, D. R. Menon, M. S. Stark, J. Torrano et al., Distinct histone modifications denote early stress-induced drug tolerance in cancer, Oncotarget, vol.9, pp.8206-8222, 2017.

T. J. Bartsoch, M. Ullah, S. Zeitoni, J. Beaver, and D. J. Prockop, Cancer cells enter dormancy after cannibalizing mesenchymal stem/stromal cells (MSCs), Proc. Natl. Acad. Sci. U.S.A, vol.113, pp.6447-6456, 2016.

M. Greaves and C. C. Maley, Clonal evolution in cancer, Nature, vol.481, pp.306-313, 2012.

D. P. Tabassum and K. Polyak, Tumorigenesis: it takes a village, Nat. Rev. Cancer, vol.15, pp.473-83, 2015.

R. A. Burell and C. Swanton, Re-evaluating clonal dominance in cancer evolution, Trends Cancer, vol.2, pp.263-276, 2016.

K. S. Korolev, J. B. Xavier, and J. Gore, Turning ecology and evolution against cancer, Nat. Rev. Cancer, vol.14, pp.371-80, 2014.

P. M. Altrock, L. L. Liu, and F. Michor, The mathematics of cancer: integrating quantitative models, Nat. Rev. Cancer, vol.15, pp.730-775, 2015.

Z. Wang and T. S. Deisboeck, Mathematical modeling in cancer drug discovery, Drug Discov. Today, vol.19, pp.145-50, 2014.

K. P. Wilkie, A review of mathematical models of cancer-immune interactions in the context of tumor dormancy, Adv. Exp. Med. Biol, vol.734, pp.201-203, 2013.

G. Carvalho, C. Guilhen, D. Balestrino, C. Forestier, and J. D. Mathias, Relating switching rates between normal and persister cells to substrate and antibiotic concentrations: a mathematical modelling approach supported by experiments, Microb. Biotechnol, vol.10, pp.616-1627, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01779031

T. Lorenzi, R. H. Chisholm, and J. Clairambault, Tracking the evolution of cancer cell populations through the mathematical lens of phenotype-structured equations, Biol. Direct, vol.11, p.43, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01321535

M. J. Hangauer, V. S. Viswanathan, M. J. Ryan, D. Bole, J. K. Eaton et al., Drugtolerant persister cancer cells are vulnerable to GPX4 inhibition, Nature, vol.551, pp.247-250, 2017.

X. Zhao, E. Pak, K. J. Ornell, M. F. Pazyra-murphy, E. L. Mackenzie et al., A transposon screen identifies loss of primary cilia as a mechanism of resistance to SMO inhibitors, Cancer Discov, vol.7, pp.1436-1449, 2017.